Advertisement

Substantia Nigra-Mediated Control of Generalized Seizures

  • S. L. Moshé
  • E. F. Sperber

Abstract

The notion that the basal ganglia participate in the expression of seizures is long-standing; however, earlier studies focused on striatal-thalamocortical interactions (Jung, 1949; Fariello, 1976; La Grutta et al., 1971; Mutani, 1969). Over the past few years, evidence has accumulated that the substantia nigra (SN) may be an important site to study because it may be involved in seizure control. In 1974, Wada and Sato reported that, during kindled seizures, the electrical activity propagates in the SN bilaterally. Four years later, while studying the anatomical substrates of kindling using the [14C]-2-deoxyglucose technique, Engel et al. (1978) noted that there were striking increases in the metabolic activity of the SN during generalized seizures in adult rats. These investigators postulated that the SN may play an active role in seizures, perhaps mitigating the anticonvulsant effects of the striatum (La Grutta et al., 1971). Subsequently, increases in the metabolic activity of the SN were observed in other animal models of epilepsy (Ben Ari et al., 1981; Lothman and Collins, 1981), in particular when animals experienced generalized seizures. These observations remained unexplored until Iadarola and Gale (1982) reported that pharmacological treatments that increase the GABA transmission of the SN can suppress a variety of experimentally induced seizures in adult rats. At about the same time, we determined that the metabolic changes that occur in the SN during seizures are age-dependent (Ackermann et al., 1982).

Keywords

Substantia Nigra GABAA Receptor Superior Colliculus Kainic Acid GABAB Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, R.F., Moshé, S.L., Albala, B.J., and Engel, J., Jr., 1982, Anatomical substrates of amygdala kindling in immature rats demonstrated by 2-deoxyglucose autoradiography, Epilepsia 23: 434–435.Google Scholar
  2. Ackermann, R.F., Chugani, H.T., Handforth, A., Moshé, S.L., Caldecolt-Hazard, S., and Engel, J. Jr., 1986, Autoradiographic studies of cerebral metabolism and blood flow in rat amygdala kindling, in: Kindling 3, (J.A. Wada, ed.), New York: Raven Press, pp. 73–87.Google Scholar
  3. Albala, B.J., Moshé, S.L., and Okada, R., 1984, Kainic acid induced seizures: A developmental study, Dev. Brain Res. 13: 139–148.CrossRefGoogle Scholar
  4. Albala, B.J., Moshé, S.L., Cubells, J.F., Sharpless, N.S., and Mackman, M.H., 1986, Unilateral peri-substantia nigra catecholaminergic lesion and amygdala kindling, Brain Res. 370: 388–392.CrossRefGoogle Scholar
  5. Amato, G., Sorbera, F., Crescimano, G., and La Grutta, V., 1981, The role of the substantia nigra in the control of amygdaloid paroxysmal activity, Arch. Int. Physiol. Biochem. 89: 91–95.CrossRefGoogle Scholar
  6. Beckstead, R.M., 1976, Convergent thalamic and mesencephalic projections to the anterior medial cortex in the rat, J. Comp. Neurol. 166: 403–416.CrossRefGoogle Scholar
  7. Ben-Ari, Y., Tremblay, E., Riche, D., Ghilini, G., and Naquet, R., 1981, Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: Metabolic mapping using the de-oxyglucose method with special reference to the pathology of epilepsy, Neurosci. 6: 1361–1391.CrossRefGoogle Scholar
  8. Bentivoglio, M., Van Der Kooy, D., and Kuypers, H.G.J.M., 1979, The organization of the efferent projections of the substantia nigra in the rat. A retrograde fluoroscent double labeling studing. Brain Res. 174: 1–17.CrossRefGoogle Scholar
  9. Bonhaus, D.W., Walters, J.R., and McNamara, J.O., 1986, Activation of substantia nigra neurons: Role in the propagation of seizures, J. Neurosci. 6: 3024–3030.Google Scholar
  10. Bowery, N.G., Hill, D.R., Hudson, A.L., and Price, G.W., 1988, GABA-B receptors, in: GABA and Benzodiazepine Receptors (R.F. Squires, ed.), Boca Raton, FL: CRC Press, pp. 107–121.Google Scholar
  11. Bowery, N.G., Price, G.W., Hudson, A.L., Hill, D.R., Wilkin, G.P., and Turnbull, M.J., 1984, GABA receptor multiplicity. Visualization of different receptor types in the mammalian CNS, Neuropharmacology 23: 219–231.CrossRefGoogle Scholar
  12. Cavalheiro, E.A., Silva, D.F., Turski, W.A., Calderazzo-Filho, L.S., Bartolotto, Z.A., and Turski, L., 1987, The susceptibility of rats to pilocarpine-induced seizures is age dependent, Dev. Brain Res. 37: 43–58.CrossRefGoogle Scholar
  13. Chevalier, G., Thierry, T., Shibazaki, T., and Féger, J., 1981, Evidence for a GABAergic inhibitory nigrotectal pathway in the rat, Neurosci. Lett. 21: 67–70.CrossRefGoogle Scholar
  14. Deniau, J.M., Hammond, C., and Riszk, A., and Féger, J., 1978, Electrophysiological properties of identified output neurons of the rat substantia nigra (pars compacta and pars reticulata); Evidences for the existence of branched neurons, Exp. Brain Res. 32: 409–422.CrossRefGoogle Scholar
  15. Deniau, J.M., Kitai, S.T., Donoghue, J.P., and Grofova, I., 1982, Neuronal interactions in the substantia nigra pars reticulata through axon collaterals of the projection neurons, Exp. Brain Res. 47: 105–113.CrossRefGoogle Scholar
  16. De Sarro, G.B., Meldrum, B., and Reaville, C., 1984, Anticonvulsant action of 2-amino-7 phos-phonoheptanoic acid in the substantia nigra, Eur.J. Pharmacol. 106: 175–179.CrossRefGoogle Scholar
  17. Dray, A., 1980, The physiology and pharmacology of mammalian basal ganglia. Prog. Neurobiol. 14: 211–335.CrossRefGoogle Scholar
  18. Engel, J., Jr., Brown, L.L., and Wolfson, L., 1978, Anatomical correlates of electrical and behavioral events related to amygdaloid kindling, Ann. Neurol. 3: 538–544.CrossRefGoogle Scholar
  19. Enna, S.J., 1988, GABA A Receptors in: GABA and Benzodiazepine Receptors. (R.F. Squires, ed.), Boca Raton, FL: CRC Press, pp. 91–106.Google Scholar
  20. Fariello, R., 1976, Forebrain influences on an amygdala acute focus in the cat, Exp. Neurol. 51: 515–528.CrossRefGoogle Scholar
  21. Fariello, R., and Hornykiewicz, O., 1979, Substantia nigra and pentylenetetrazol threshold in rats: Correlation with striatal dopamine metabolism, Exp. Neurol. 65: 202–208.CrossRefGoogle Scholar
  22. Faull, R., 1985, Thalamus, in: The Rat Nervous System (G. Paxinos, ed.), New York: Academic Press, pp. 129–168.Google Scholar
  23. Franck, J.E., and Schwartzkroin, P.A., 1987, The genetic epilepsy prone rat has altered GABA receptor binding in substantia nigra but not in inferior colliculus, Soc. Neurosci. Abst. 13: 944.Google Scholar
  24. Frye, G.D., McCowan, T.J., and Breese, G.R., 1983, Characterization of susceptibility to audiogenic seizures in ethanol-dependent rats after microinjection of gamma-aminobutyric acid (GABA) agonists into the inferior colliculus, substantia nigra or medial septum, J. Pharmacol. Exp. Ther. 227: 663–670.Google Scholar
  25. Gale, K., 1985, Mechanisms of seizure control mediated by gamma-aminobutyric acid: Role of the substantia nigra, Fed. Am. Soc. Exp. Biol. 44: 2414–2424.Google Scholar
  26. Garant, D.S., and Gale, K., 1983, Lesions of substantia nigra protect against experimentally induced seizures, Brain Res. 273: 156–161.CrossRefGoogle Scholar
  27. Garant, D., and Gale, K., 1986, Intranigral muscimol attenuates electrographic signs of seizure activity induced by intravenous bicuculline in rats, Eur. J. Pharmacol. 124: 365–369.CrossRefGoogle Scholar
  28. Garant, D., and Gale, K., 1987, Substantia nigra-mediated anticonvulsant actions: Role of nigral output pathways, Exp. Neurol. 97: 143–159.CrossRefGoogle Scholar
  29. Garcia-Cairasco, N., and Sabbatini, R.M.E., 1983, Role of the substantia nigra in audiogenic seizures: a neuroethological analysis in the rat, Brazilian J. Med. Biol. Res. 16: 171–183.Google Scholar
  30. Gastaut, H., Gastaut, J.L., Gonzaleze Silva, S.E., and Fernandez-Sanchez, G.E., 1975, Relative frequency of different types of epilepsy. A study employing the classification of the International League Against Epilepsy, Epilepsia 16: 457–461.CrossRefGoogle Scholar
  31. Gibbs, F.A., and Gibbs, E.L., 1963, Age factor in epilepsy. TV. Engl. J. Med. 269: 1230–1236.CrossRefGoogle Scholar
  32. Gonzalez, L.P., and Hettinger, M.K., 1984, Intranigral muscimol suppresses ethanol withdrawal seizures, Brain Res. 298: 163–166.CrossRefGoogle Scholar
  33. Grace, A.A., and Bunney, B.S., 1979, Paradoxical GABA excitation of nigral dopaminergic cells: Indirect mediation through reticulata inhibitory neurons, Eur. J. Pharmacol. 59: 211–218.CrossRefGoogle Scholar
  34. Hauser, W.A., and Kurland, L.T., 1975, The epidemiology of epilepsy in Rochester, Minnesota, 1935 through 1967, Epilepsia 16: 1–66.CrossRefGoogle Scholar
  35. Heimer, L., Alheid, G., and Zaborszky, L., 1985, Basal ganglia, in: The Rat Nervous System (G. Paxinos, ed.), New York: Academic Press, pp. 37–85.Google Scholar
  36. Heyer, E.J., Nowak, L.M., and MacDonald, R.L., 1981, Bicuculline: A convulsant with synaptic and nonsynaptic actions, Neurology 31: 1381–1390.Google Scholar
  37. Hill, D.R., and Bowery, N.G., 1981, 3H-Baclofen and 3H-GABA bind to bicuculline insensitive GABAB sites in rat brain, Nature (Lond.) 290: 149–152.CrossRefGoogle Scholar
  38. Hosford, D.A., and McNamara, J.O., 1988, Microinjection of muscimol into entopeduncular nucleus suppresses pilocarpine but not maximal electroshock seizures in rats, Brain Res. 462: 205–210.CrossRefGoogle Scholar
  39. Howse, D.C., 1983, Cerebral energy metabolism during experimental status epilepticus, in: Advances in Neurology, Status Epilepticus (A. Delgado-Escueta, C.G. Wasterlain, D.M. Treiman, and R.J. Porter, eds.), New York: Raven Press, pp. 34: 209–216.Google Scholar
  40. Huerta, M.F., and Harting, J.K., 1984, The mammalian superior colliculus: studies of its morphology and connections, in: Comparative Neurology of the Optic Tectum (H. Vanegas, ed.), New York: Plenum Press, pp. 687–773.Google Scholar
  41. Iadarola, M.J., and Gale, K., 1982, Substantia nigra: Site of anticonvulsant activity mediated by gamma-aminobutyric, Science 218: 1237–1240.CrossRefGoogle Scholar
  42. Johnston, G.A.R., 1986, Multiplicity of GABA receptors, in: Benzodiazepine / GABA Receptors and Chloride Channels (R.W. Olsen, and J.G. Venter, eds.), New York: Alan R. Liss, pp. 55–71.Google Scholar
  43. Jones, E.G., and Leavitt, R.Y., 1974, Retograde axonal transport and the demonstration of nonspecific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey, J. Comp. Neurol. 154: 349–378.CrossRefGoogle Scholar
  44. Jung, R., 1949, Hirnelektrische Untersuchungen über den Elektrokrampf: Die Erregunsablä ufe in corticalen und subcorticalen Hirnregionen bei Katze und Hund, Arch. Psychiar. Nerve nkr. 183: 206–244.CrossRefGoogle Scholar
  45. Karabelas, A.B., and Purpura, D.P., 1980, Evidences for autapses in the substantia nigra, Brain Res. 200: 467–473.CrossRefGoogle Scholar
  46. Krettek, J.E., and Price, J.L., 1978, Amygdaloid projections to subcortical structures within the basal forebrain and brainstem of the rat and cat, J. Comp. Neurol. 178: 225–254.CrossRefGoogle Scholar
  47. La Grutta, V., Amato, G., and Zagami, M.T., 1971, The importance of the caudate nucleus in the control of convulsive activity in the amygdaloid complex and the temporal cortex of the rat, Electroen-cephalogr. Clin. Neurophysiol. 31: 57–69.CrossRefGoogle Scholar
  48. Lazarova, M., Przewlocka, B., Mogilnicka, E., and Stala, L., 1979, The effect of L-Dopa and L-5-hydroxytryptophan on the pentetrazole seizures in rats after lesions of the median raphé nucleus and substantia nigra, Pol. J. Pharmacol. Pharm. 31: 57–69.Google Scholar
  49. LeGal LaSalle, G., Kajima, M., and Feldblum, S., 1983, Abortive amygdaloid kindling seizures following microinjections of gamma-vinyl-GABA in the vicinity of substantia nigra in rats, Neurosci. Lett. 36: 69–74.CrossRefGoogle Scholar
  50. Lothman, E.W., and Collins, R.C., 1981, Kainic acid induced limbic seizures: Metabolic, behavioral, electroencephalographic and neuropatho-logical correlates, Brain Res. 218: 99–318.CrossRefGoogle Scholar
  51. Loughlin, S.E., and Fallon, J.H., 1984, Substantia nigra and ventral tegmental area projections to cortex; topography and collateralization, Neuroscience 11: 425–435.CrossRefGoogle Scholar
  52. Löscher, W., and Schwark, W.S., 1985, Evidence for impaired GABA-ergic activity in the substantia nigra in amygdaloid kindled rats, Brain Res. 339: 146–150.CrossRefGoogle Scholar
  53. Löscher, W., and Schwark, W.S., 1987, Further evidence for abnormal GABAergic circuits in amygdala-kindled rats, Brain Res. 420: 385–390.CrossRefGoogle Scholar
  54. MacLeod, N.K., James, T.A., Kilpatrick, I.C., and Starr, M.S., 1980, Evidence for a GABAergic ni-grothalamic pathway in the rat. II. Electrophys-ical studies, Exp. Brain Res. 40: 55–61.CrossRefGoogle Scholar
  55. McNamara, J.O., Galloway, M.T., Rigsbee, L.L., and Shin, C., 1984, Evidence implicating substantia nigra in regulation of kindled seizure threshold. J. Neurosci. 4: 2410–2417.Google Scholar
  56. Morimoto, K., and Goddard, G.V., 1987, The substantia nigra is an important site for the containment of seizure generalization in the kindling model of epilepsy, Epilepsia 28: 1–10.CrossRefGoogle Scholar
  57. Moshé, S.L., 1981, The effects of age on the kindling phenomenon, Dev. Psychobiol. 14: 75–81.CrossRefGoogle Scholar
  58. Moshé, S.L., and Albala, B.J., 1983, Maturational changes in postictal refractoriness and seizure susceptibility in developing rats, Ann. Neurol. 13: 552–557.CrossRefGoogle Scholar
  59. Moshé, S.L., and Albala, B.J., 1984, Nigral muscimol infusions facilitate the development of seizures in immature rats, Dev. Brain Res. 13: 305–308.CrossRefGoogle Scholar
  60. Moshé, S.L., Albala, B.J., Ackermann, R.F., and Engel, J., Jr., 1983, Increased seizure susceptibility of the immature brain, Dev. Brain Res. 7: 81–85.CrossRefGoogle Scholar
  61. Moshé, S.L., Okada, R., and Albala, B.J., 1985, Ventromedial thalamic lesions and seizure susceptibility, Brain Res. 337: 368–372.CrossRefGoogle Scholar
  62. Moshé, S.L., Ackermann, R.F., Albala, B.J., and Okada, R., 1986, The role of substantia nigra in seizures of developing animals, in: Kindling 3 (J.A. Wada, ed.), New York: Raven Press, pp. 91–106.Google Scholar
  63. Moshé, S.L., Sperber, E.F., Wurpel, J.N.D., and Sharpless, N.S., 1987, Age related changes in striatal dopamine activity following nigral muscimol infusions. Dev. Brain Res. 31: 129–132.CrossRefGoogle Scholar
  64. Moshé, S.L., Sperber, E.F., Brown, L.L., Tempel, A., and Wurpel, J.N.D., 1988, Experimental Epilepsy: Developmental aspects, Clev. Clin. J. Med. 56:S92–99.Google Scholar
  65. Mutani, R., 1969, Experimental evidence for the existence of an extrarhincephalic control of the activity of the cobalt rhinencephalic epileptogenic focus. Part I. The role played by the caudate nucleus, Epilepsia 10: 337–350.CrossRefGoogle Scholar
  66. Nitsch, C., Schmude, B., and Haug, P., 1983, Alterations in the content of amino acid neurotransmitters before the onset and during the course of methoxypyridoxine-induced seizures in individual rabbit brain regions, J. Neurochem. 40: 1571–1580.CrossRefGoogle Scholar
  67. Nevander, G., Ingvar, M., Auer, R., and Siesjø, B.K., 1985, Status epilepticus in well-oxygenated rats causes neuronal necrosis. Ann. Neurol. 18: 281–290.CrossRefGoogle Scholar
  68. Okada, Y., Nitsch-Hassler, C., Kim, J.S., Bak, I.J., and Hassler, R., 1971, Role of gamma-aminobutyric (GABA) in the extrapyramidal motor system. 1. Regional distribution of GABA in rabbit, rat, guinea pig, and baboon CNS, Exp. Brain Res. 13: 514–518.CrossRefGoogle Scholar
  69. Okada, R., Moshé, S.L., Wong, B.Y., Sperber, E.F., and Zhao, D., 1986, Age related substantia nigra mediated seizure facilitation, Exp. Neurol. 93: 180–187.CrossRefGoogle Scholar
  70. Okada, R., Nagishi, N., and Nagaya, H., 1989, The role of the nigrotegmental GABAergic pathway in the propagation of pentylenetetrazol induced seizures, Brain Res. 480: 383–387.CrossRefGoogle Scholar
  71. Olsen, R.W., Bann, M., and Miller, T., 1976, Studies on the neuropharmacological activity of bicu-culline and related compounds, Brain Res. 102: 283–299.CrossRefGoogle Scholar
  72. Olsen, R.W., Snowhill, E.W., and Wamsley, J.K., 1983, Autoradiographic localization of low affinity GABA receptors with 3H-bicuculline metho-chloride, Eur. J. Pharmacol. 99: 247–248.CrossRefGoogle Scholar
  73. Rondouin, G.R., Chicherportiche, M., Lerner-Natoli, M., Ben-Attia, A., Privat, and Baldy-Moulinier, A., 1986, Inhibitory processes in limbic kindling, in: Kindling Vol. 5 (J.A. Wada, ed.), New York: Raven Press, pp. 361–371.Google Scholar
  74. Savage, D.D., Reigel, C.E., and Jobe, P.C., 1986, Angular bundle kindling is accelerated in rats with genetic predisposition to acoustic stimulus-induced seizures, Brain Res. 376: 412–415.CrossRefGoogle Scholar
  75. Schwartzkroin, P.A., 1984, Epileptogenesis in the immature CNS, in: Electrophysiology of Epilepsy (P.A. Schwartzkroin and H.V. Wheal, eds.), New York: Academic Press, pp. 389–412.Google Scholar
  76. Sperber, E.F., and Moshé, S.L., 1988, Age-related differences in seizure susceptibility to flurothyl, Dev. Brain Res. 39: 295–297.CrossRefGoogle Scholar
  77. Sperber, E.F., Wong, B.Y., Wurpel, J.N.D., and Moshé, S.L., 1987, Nigral infusions of muscimol or bicuculline facilitate seizures in developing rats, Dev. Brain Res. 37: 243–250.CrossRefGoogle Scholar
  78. Sperber, E.F., Brown, L.L., Wurpel, J.N.D., and Moshé, S.L., 1988, Nigral infusions of muscimol in rat pups produce local cerebral glucose utilization effects different from adult rats, Soc. Neu-rosci. Abstr. 14: 1296.Google Scholar
  79. Sperber, E.F., Wurpel, J.N.D., and Moshé, S.L., 1989a, Evidence for the involvement of nigral GABAB receptors in seizures of rat pups, Dev. Brain Res. 47: 143–146.CrossRefGoogle Scholar
  80. Sperber, E.F., Wurpel, J.N.D., Zhao, D.Y., and Moshé, S.L., 1989b, Evidence for the involvement of nigral GABAA receptors in seizures of adult rats, Brain Res. 480: 378–382.CrossRefGoogle Scholar
  81. Sperber, E.F., Wurpel, J.N.D., Sharpless, N.S., and Moshé, S.L., 1989c, Intranigral GABAergic drug effects on striatal dopamine activity, Pharmacol. Biochem. Behav. 32: 1067–1070.CrossRefGoogle Scholar
  82. Toussi, H.R., Schatz, R.A., and Wasczak, B.L., 1987, Suppression of methionine sulfoximine seizures by intranigral gamma-vinyl GABA injection, Eur. J. Pharmacol. 37: 261–264.CrossRefGoogle Scholar
  83. Turski, L., Cavalheiro, E.A., Schwarz, M., Turski, W.A., Mello, L.E.A.M., Bartolotto, Z.A., Klockgether, T., and Sontag, K.H., 1986, Susceptibility to seizures produced by pilocarpine in rats after microinjection of isoniazid or gamma-vinyl GABA in the substantia nigra, Brain Res. 370: 294–309.CrossRefGoogle Scholar
  84. Unerstall, J.R., Kuhar, M.J., Niehoff, D.L., and Palacios, J.M., 1981, Benzodiazepine receptors are coupled to a subpopulation of GABA receptors: Evidence from a quantiative autoradiographic study, J. Pharmacol. Exp. Ther. 218: 797–804.Google Scholar
  85. Veening, J.G., Cornelissen, F.M., and Lieven, P.A.J.M., 1980, The topical organization of the afferents to the caudoputamen in rat: A horse-radish peroxidase study, Neuroscience 5: 1253–1268.CrossRefGoogle Scholar
  86. Wada, J.A., and Sato, M., 1974, Generalized convulsive seizures induced by daily stimulation of the amygdala in cats, Neurology 24: 565–574.Google Scholar
  87. Wamsley, J.K., Mc Cabe, R.T., and Gehlert, D.R., 1988, Autoradiographic localization of binding sites in several GABA and benzodiazepine receptor complexes, in: GABA and Benzodiasepine Receptors (R.F. Squires, ed.), Boca Raton, FL: CRC Press, pp. 80–90.Google Scholar
  88. Waszczak, B.L., Eng, N., and Walters, J., 1980, Effects of muscimol and Picrotoxin on single unit activity of substantia nigra neurons, Brain Res. 188: 185–197.CrossRefGoogle Scholar
  89. Wong, B.Y., and Mosh, S.L., 1987, Mutual interactions between repeated flurothyl convulsions and electrical kindling, Epilepsy Res. 1: 159–64.CrossRefGoogle Scholar
  90. Woodbury, L.A., 1977, Incidence and prevalence of seizure disorders including the epilepsies in the U.S.A. A review and analysis of the literature, in: Plan for the Nationwide Action of Epilepsy, (NIH) DHEW Publication No., pp. 78–276; IV:24-77.Google Scholar
  91. Wurpel, J.N.D., Sperber, E.F., and Moshé, S.L., 1988a, Infusions of an excitatory aminoacid antagonist into the substantia nigra evoke an age-dependent effect on seizures, Soc. Neurosci. Abstr. 14: 1148.Google Scholar
  92. Wurpel, J.N.D., Tempel, A., Sperber, E.F., and Moshé, S.L., 1988b, Age-related changes of muscimol binding in the substantia nigra, Dev. Brain Res. 43: 305–308.CrossRefGoogle Scholar
  93. Wurpel, J.N.D., Sperber, E.F., and Moshé, S.L., 1989, Baclofen inhibits kindling in immature rat, Epilepsy Res. (in press).Google Scholar
  94. Yamasaki, D.S., Krautharner, G.M., and Rhoades, R.W., 1986, Superior collicular projection to intralaminar thalamus in the rat, Brain Res. 378: 223–33.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston, Inc. 1990

Authors and Affiliations

  • S. L. Moshé
  • E. F. Sperber

There are no affiliations available

Personalised recommendations