Advertisement

Mechanisms Underlying Generalized Tonic—Clonic Seizures in the Rat: Functional Significance of Calcium Ions

  • E.-J. Speckmann
  • J. Walden
  • D. Bingmann
  • A. Lehmenkühler
  • U. Altrup

Abstract

The role played by calcium ions in the generation of tonic-clonic seizure activity is dealt with in the present chapter. In this context the animal experimental model used and the dependence of paroxysmal depolarizations on transmembraneous calcium fluxes are first described. The main chapter focuses on the dependence of tonic-clonic epileptic activity on calcium currents and on the possibility that organic calcium antagonists could have some antiepileptic effects. The chapter concludes with a description of some technical and pharmacological experiments run as controls.

Keywords

Calcium Antagonist Snail Helix Pomatia Zure Activity Organic Calcium Antagonist Transmembraneous Calcium Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bechtereva, N.P., 1974a, DC changes associated with the sleep-wakefulness cycle, in: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10, Part A (A. Remond, ed.-in-chief ), Elsevier, Amsterdam, pp. 25–32.Google Scholar
  2. Bechtereva, N.P., 1974b, DC changes under influence of anesthetic and neurotropic drugs, in: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10, Part A (A. Remond, ed.-in-chief ), Elsevier, Amsterdam, pp. 33–40.Google Scholar
  3. Bingmann, D., and Speckmann, E.-J., 1986, Depression of pentylenetetrazol-induced epileptiform discharges in CA3 neurons of hippocampal slices by flunarizine and verapamil, in: Epilepsy and Calcium (E.-J. Speckmann, H. Schulze, and J. Waiden, eds.), Urban & Schwarzenberg, Munich, pp. 301–317.Google Scholar
  4. Bingmann, D., and Speckmann, E.-J., 1989, Specific suppression of pentylenetetrazol-induced epileptiform discharges in CA3 neurons (hippocampal slice, guinea pig) by the organic calcium antagonists flunarizine and verapamil, Exp. Brain Res. 74: 239–248.CrossRefGoogle Scholar
  5. Bingmann, D., Speckmann, E.-J., Baker, R.E., Ruijter, J., and de Jong, B.M., 1988, Differential antiepileptic effects of the organic calcium antagonists verapamil and flunarizine in neurons of organotypic neocortical expiants from newborn rats, Exp. Brain Res. 72: 439–442.CrossRefGoogle Scholar
  6. Caspers, H., and Schulze, H., 1959, Die Veränderungen der corticalen Gleichspannung während der natürlichen Schlaf-Wach-Perioden beim freibeweglichen Tier, Pflugers Arch. 270: 103–200.CrossRefGoogle Scholar
  7. Caspers, H., and Simmich, W., 1966, Cortical DC shifts associated with seizure activity, in: Comparative and Cellular Pathophysiology of Epilepsy (Z. Servit, ed.), Excerpta Medica Foundation, Amsterdam, pp. 151–163.Google Scholar
  8. Caspers, H., and Speckmann, E.-J., 1969, DC potential shifts in paroxysmal states, in: Basic Mechanisms of the Epilepsies (H.H. Jasper, A.A. Ward, and A. Pope, eds.), Little, Brown, Boston, MA, pp. 375–395.Google Scholar
  9. Caspers, H., and Speckmann, E.-J., 1972, Cerebral pO2,pCO2 and pH: Changes during convulsive activity and their significance for spontaneous arrest of seizures, Epilepsia 13: 699–725.CrossRefGoogle Scholar
  10. Caspers, H., and Speckmann, E.-J., 1974, Cortical DC shifts associated with changes of gas tensions in blood and tissue, in: Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 10, Part A (A. Remond, ed.-in-chief), Elsevier, Amsterdam, pp. 41–65.Google Scholar
  11. Caspers, H., Schütz, E., und Speckmann, E.-J., 1963, Gleichspannungsä nderungen an der Hirnrinde bei Sauerstoffmangel, Z. Biol. 114: 112–126.Google Scholar
  12. Caspers, H., Speckmann, E.-J., and Lehmenkühler, A., 1980, Electrogenesis of cortical DC potentials, Prog. Brain Res. 54: 3–15.CrossRefGoogle Scholar
  13. Caspers, H., Speckmann, E.-J., and Lehmenkühler, A., 1987, DC potentials of the cerebral cortex. Seizure activity and changes in gas pressure, Rev. Physiol. Biochem. Pharmacol. 106: 127–178.CrossRefGoogle Scholar
  14. Dill, R.C., Romet, J.A., and Porter, R.W., 1979, Suppression of epileptiform activity by increased intracranial pressure in cat, Exp. Neurol. 66: 186–199.CrossRefGoogle Scholar
  15. Hamann, S.R., Todd, G.D., and McAllister, R.G., 1983, The pharmacology of verapamil. V. Tissue distribution of verapamil and norverapamil in rat and dog, Pharmacology 27: 1–8.CrossRefGoogle Scholar
  16. Hamon, B., and Heinemann, U., 1986, Effects of GABA and bicuculline on N-methyl-D-aspartate and quisqualate-induced reductions in extracellular free calcium in area CA1 of the hippocampal slice, Exp. Brain Res 64: 27–36.CrossRefGoogle Scholar
  17. Heinemann, U., and Louvel, J., 1983, Changes in [Ca2+]o and [K+]o during repetitive electrical stimulation and during pentetrazol-induced seizure activity in the sensorimotor cortex of cats, Pflügers Arch. 398: 310–317.CrossRefGoogle Scholar
  18. Heinemann, U., Lux, H.D., and Gutnick, M.J., 1977, Extracellular free calcium and potassium during paroxysmal activity in cerebral cortex of the cat, Exp. Brain Res. 27: 237–243.CrossRefGoogle Scholar
  19. Koenig, J.F.R., and Klippel, R.A., 1973, The Rat Brain: A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brain Stem, Williams & Wil-kins, Baltimore, D.Google Scholar
  20. Meyer, F.C., Tally, P.W., Anderson, R.E., Sundt, T.M., Yaksh, T.L., and Sharbrough, F.W., 1986a, Inhibitions of electrically induced seizures by a dihydropyridine calcium channel blocker, Brain Res. 384: 180–183.CrossRefGoogle Scholar
  21. Meyer, F.B., Anderson, R.E., Sundt, T.M., and Sharbrough, F.W., 1986b, Selective central nervous system calcium channel blockers. A new class of anticonvulsant agents, Mayo Clin. Proc. 61: 239–247.Google Scholar
  22. Morocutti, C., Pierelli, F., Sanarelli, L., Stefano, E., Peppe, A., and Mattioli, G.L., 1986, Antiepileptic effects of a calcium antagonist (Nimo-dipine) on cefazolin-induced epileptogenic foci in rabbits, Epilepsia 27: 498–503.CrossRefGoogle Scholar
  23. O’Leary, J.L.,and Goldring, S., 1964, DC potentials of the brain, Physiol. Rev. 44: 91–125.Google Scholar
  24. Paxinos, G., and Watson, C., 1982, The Rat Brain in Stereotaxic Coordinates, Academic Press, London.Google Scholar
  25. Pockberger, H., Rappelsberger, P., and Petsche, H., 1986, Calcium antagonists and their effects on generation of interictal spikes: A field potential analysis in the neocortex of the rabbit, in: Epilepsy and Calcium (E.-J. Speckmann, H. Schulze, and J. Waiden, eds.), Urban & Schwarzenberg, Munich, pp. 357–378.Google Scholar
  26. Speckmann, E.-J., 1986, Experimentelle Epilepsieforschung, Wissenschaftliche Buchgesellschaft, Darmstadt.Google Scholar
  27. Speckmann, E.-J., and Caspers, H., 1974, The effect of O2 and CO2 tensions in the nervous tissue on neuronal activity and DC potentials, in: A Rémond, Handbook of Electroencephalography and Clinical Neurophysiology (A. Rémond, ed.), Vol. 10, Part A, Elsevier, Amsterdam, pp. 71–89.Google Scholar
  28. Speckmann, E.-J., Caspers, H., and Janzen, R.W.C., 1978, Laminar distribution of cortical field potentials in relation to neuronal activities during seizure discharges, in: Architectonics of the Cerebral Cortex (M.A.B. Brazier, and H. Petsche, eds.), Raven Press, New York, pp. 191–209.Google Scholar
  29. Speckmann, E.-J., Waiden, J., Altrup, U., Bingmann, D., and Pockberger, H., 1988, Wirkung des Calciumantagonisten Verapamil auf epileptische Depolarisationen einzelner Neurone der Weinbergschnecke (Helix pomatia), in: Epilepsie 87 (E.-J. Speckmann and D. Palm, eds.), Einhorn Presse-Verlag, Reinbeck, pp. 278–280.Google Scholar
  30. Walden, J., and Speckmann, E.-J., 1988, Suppression of recurrent generalized tonic-clonic seizure discharges by intraventricular perfusion of a calcium antagonist, Electroencephalogr. Clin. Neu-rophysiol. 69: 353–362.CrossRefGoogle Scholar
  31. Walden, J., Speckmann, E.-J., and Witte, O.W., 1985, Suppression of focal epileptiform discharges by intraventricular perfusion of a calcium antagonist, Electroencephalogr. Clin. Neurophy-siol. 61: 299–309.CrossRefGoogle Scholar
  32. Walden, J., Speckmann, E.-J., Pockberger, H., and Lehmenkühler, C., 1988, Glutamate and NMDA elicited field potentials in the rat’s motorcortex in vivo: Augmentation by GABA, Eur. J. Neurosci. Suppl.l: 53.Google Scholar
  33. Witte, O.W., Speckmann, E.-J., and Waiden, J., 1987, Motor cortical epileptic foci in vivo: Actions of a calcium channel blocker on paroxysmal neuronal depolarizations, Electroencephalogr. Clin. Neurophysiol. 66: 43–55.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston, Inc. 1990

Authors and Affiliations

  • E.-J. Speckmann
  • J. Walden
  • D. Bingmann
  • A. Lehmenkühler
  • U. Altrup

There are no affiliations available

Personalised recommendations