Animal Models of Generalized Convulsive Seizures: Some Neuroanatomical Differentiation of Seizure Types


Despite our ability to characterize, classify, and treat numerous forms of epileptic seizures, our understanding of the neuroanatomical and neurochemical substrates of seizures is remarkably limited. Even in animal models, in which we often have experimental control over seizure onset, intensity, duration, and quality, we are at a loss to define the precise neural pathways that are responsible for the various stages of seizure development. Clearly, an understanding of this nature would be of major benefit in providing insights regarding both potential substrates of pathology as well as therapeutic interventions for seizure disorders.


Substantia Nigra Inferior Colliculus Convulsive Seizure Audiogenic Seizure Clonic Convulsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albright, P.S., and Burnham, W.M., 1980, Development of a new pharmacological seizure model: Effects of anti-convulsants on cortical-and amygdala-kindled seizures in the rat. Epilepsia 21: 681–689.CrossRefGoogle Scholar
  2. Ben Ari, Y., 1985, Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14: 375–403.CrossRefGoogle Scholar
  3. Bergmann, F., Costin, A., and Gutman, J., 1963, A low threshold convulsive area in the rabbit mesencephalon. Electroencephalogr. Clin. Neuro-physiol. 15: 683–690.CrossRefGoogle Scholar
  4. Browning, R., 1985, Role of the brainstem reticular formation in tonic-clonic seizures: Lesion and pharmacological studies. Fed. Proc. 44: 2425–2431.Google Scholar
  5. Browning, R.A., and Faingold, C.L., 1988, Poster presented at the Generalized Epilepsy Symposium, Montreal, Canada.Google Scholar
  6. Browning, R., and Nelson, D., 1985, Variation in threshold and pattern of electroshock-induced seizures in rats depending on site of stimulation. Life Sci. 37: 2205–2211.CrossRefGoogle Scholar
  7. Browning, R., and Nelson, D., 1986, Modification of electroshock and PTZ seizure patterns in rats after precollicular transections. Exp. Neurol. 93: 546–556.CrossRefGoogle Scholar
  8. Browning, R., Turner, F., Simonton, R., and Bundman, M., 1981, Effect of midbrain and pontine tegmental lesions on the maximal electro-shock seizure pattern in rats. Epilepsia 22: 583–594.CrossRefGoogle Scholar
  9. Browning, R., Nelson, D., Mogharreban, N., Jobe, P., and Laird, H., 1985, Effect of midbrain and pontine tegmental lesions on audiogenic seizures in genetically epilepsy prone rats. Epilepsia 26: 175–183.CrossRefGoogle Scholar
  10. Dean, P., and Gale, K., 1989, Anticonvulsant action of GABA receptor blockade in the nigrotectal target region. Brain Res. 477: 391–395.CrossRefGoogle Scholar
  11. DePaulis, A., Vergnes, M., and Marescaux, C., et al., 1988, Evidence that activation of GABA receptors in the substantia nigra suppresses spontaneous spike-and-wave discharges in the rat. Brain Res. 448: 20–29.CrossRefGoogle Scholar
  12. DeSarro, G., Meldrum, B.S., and Reavill, C., 1985, Anticonvulsant action of 2-amino-7-phos-phono-heptanoic acid in the substantia nigra. Eur. J. Pharmacol. 106: 175–179.CrossRefGoogle Scholar
  13. Engel, J., Jr., Wolfson, L., and Brown, L., 1978, Anatomical correlates of electrical and behavioral events related to amygdala kindling. Ann. Neurol. 3: 538–544.CrossRefGoogle Scholar
  14. Esplin, D.W., and Freston, J.W., 1960, Physiological and pharmacological analysis of spinal cord convulsions. J. Pharmacol. Exp. Ther. 130: 68–80.Google Scholar
  15. Esplin, D.W., and Laffan, R.J., 1957, Determinants of flexor and extensor components of maximal seizures in cats. Arch. Int. Pharmacodyn. Ther. 113: 189–202.Google Scholar
  16. Faingold, C.L., 1988, The genetically epilepsy prone rat. Gen. Pharmacol. 19: 331–338.CrossRefGoogle Scholar
  17. Faingold, C.L., Millan, M.H., Boersma, C.A., and Meldrum, B.S., 1988, Excitant amino acids and audiogenic seizures in the genetically epilepsy-prone rat. I. Afferent seizure initiation pathways. Exp. Neurol. 99: 678–686.CrossRefGoogle Scholar
  18. Fernicola, D.J., and Gale, K., 1986, Midbrain site of convulsant action of morphine. Soc. Neurosci. 12:Abstr. #25.6.Google Scholar
  19. Frye, G., McCown, T., and Breese, G., 1983, Characterization of susceptibility to audiogenic seizures in ethanol-dependent rats after microinjection of GABA agonists into the inferior colliculus, substantia nigra or medial septum. J. Pharmacol. Exp. Ther. 227: 663–670.Google Scholar
  20. Frye, G.D., McCown, T.J., Breese, G.R., and Peterson, S.L., 1986, GABAergic modulation of inferior colliculus excitability: Role in ethanol withdrawal audiogenic seizures. J. Pharmacol. Exp. Ther. 237: 478–485.Google Scholar
  21. Gabreels, F., 1972, De involved van Phenytoine op de Purkinjecell van de rat. Doctoral dissertation. Catholic University of the Netherlands, Nijmegen.Google Scholar
  22. Gale, K., 1985, Mechanisms of seizure control mediated by gamma-aminobutyric acid: Role of the substantia nigra. Fed. Proc. 44: 2414–2424.Google Scholar
  23. Garant, D.S., and Gale, K., 1983, Lesions of substantia nigra protect against experimentally induced seizures. Brain Res. 273: 156–161.CrossRefGoogle Scholar
  24. Garant, D., and Gale, K., 1986, Intranigral muscimol attenuates electrographic signs of seizure activity induced by intravenous bicuculline in rats. Eur. J. Pharmacol. 124: 365–369.CrossRefGoogle Scholar
  25. Garant, D., and Gale, K., 1987, Substantia nigra-mediated anticonvulsant actions: Role of nigral output pathways. Exp. Neurol. 97: 143–159.CrossRefGoogle Scholar
  26. Glaser, G.H., 1980, Mechanisms of antiepileptic drug action: Clinical indicators. Adv. Neurol. 27: 11–20.Google Scholar
  27. Goddard, G., McIntyre, D., and Leech, C., 1969, A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 25: 295–330.CrossRefGoogle Scholar
  28. Gonzales, L., and Hettinger, M., 1984, Intranigral muscimol suppresses ethanol withdrawal seizures. Brain Res. 298: 163–166.CrossRefGoogle Scholar
  29. Hershkowitz, N., and Raines, A., 1978, Effects of carbamazepine on muscle spindle discharges. J. Pharmacol. Exp. Ther. 204: 581–591.Google Scholar
  30. Iadarola, M.J., and Gale, K., 1982, Substantia nigra: Site of anticonvulsant activity mediated by gamma-aminobutyric acid. Science 218: 1237–1240.CrossRefGoogle Scholar
  31. Jobe, P.C., Picchioni, A.L., and Chin, L., 1973, Role of brain norepinephrine in audiogenic seizures in the rat. J. Pharmacol. Exp. Ther. 184: 1–10.Google Scholar
  32. Jobe, P.C., Dailey, J.W., and Reigel, C.E., 1986, Noradrenergic and serotonergic determinats of seizure susceptibility and severity in genetically epilepsy-prone rats. Life Sci. 39: 775–782.CrossRefGoogle Scholar
  33. Krall, R., Penry, J.K., White, B., Kupferberg, H., and Swinyard, E., 1978, Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 19: 409–428.CrossRefGoogle Scholar
  34. Kreindler, A., Zuckermann, E., Steriade, M., and Chimion, J., 1958, Electroclinical features of convulsions induced by stimulation of brain stem. J. Neurophysiol. 21: 430–436.Google Scholar
  35. LeGal LaSalle, G., Kijima, M., and Feldblum, S., 1983, Abortive amygdaloid kindled seizures following microinjection of gamma-vinyl-GABA in the vicinity of substantia nigra in rats. Neurosci. Lett. 36: 69–74.30.CrossRefGoogle Scholar
  36. LeGal LaSalle, G., Shen, K.F., and Feldblum, S., 1984, Role of the hippocampus, amygdala and the substantia nigra in the evolution of status epilep-ticus induced by systemic injection of kainic acid in the rat. Electroencephalogr. Clin. Neurophysiol. 14: 235–40.CrossRefGoogle Scholar
  37. Levy, L., and Fenichel, G.M., 1965, Diphenylhy-dantoin activated seizures. Neurology 15: 716–722.Google Scholar
  38. Löscher, W., and Schwark, W., 1985, Evidence for impaired GABAergic activity in the substantia nigra of amygdaloid kindled rats. Brain Res. 339: 146–150.CrossRefGoogle Scholar
  39. Maggio, R., and Gale, K., 1989, Seizures evoked from area tempestas are subject to control by GABA and glutamate receptors in substantia nigra. Exp. Neurol. 105: 184–188.CrossRefGoogle Scholar
  40. McNamara, J.O., 1986, Kindling model of epilepsy. Adv. Neurol. 44: 857–877.Google Scholar
  41. McNamara, J.O., Galloway, M.T., Rigsbee, L.C., and Shin, C., 1984, Evidence implicating substantia nigra in regulation of kindled seizure threshold. J. Neurosci. 4: 2410–2417.Google Scholar
  42. Millan, M., Patel, S., Mello, L., and Meldrum, B., 1986a, Focal injection of 2-amino-7-phosphono-pheptanoic acid into prepiriform cortex protects against pilocarpine-induced limbic seizures in rats. Neurosci. Lett. 70: 69–74.CrossRefGoogle Scholar
  43. Millan, M.H., Meldrum, B.S., and Fainfold, C.S., 1986b, Induction of audiogenic seizure susceptibility by focal infusion of excitant amino acid or bicuculline into the inferior colliculus of normal rats. Exp. Neurol. 91: 634–639.CrossRefGoogle Scholar
  44. Millan, M.H., Meldrum, B.S., Boersma, C.A., and Faingold, C.L., 1988, Excitant amino acids and audiogenic seizures in the genetically epilepsy prone rat. II. Efferent seizure propagating pathways. Exp. Neurol. 99: 687–698.CrossRefGoogle Scholar
  45. Morimoto, K., Dragunow, M., and Goddard, G., 1986, Deep prepyriform cortex kindling and its relation to amygdala kindling in the rat. Exp. Neurol. 94: 637–648.CrossRefGoogle Scholar
  46. Monta, K., Okamota, M., Seki, K., and Wada, J., 1985, Suppression of amygdala kindled seizures in cats by enhanced GABAergic transmission in the substantia inominata. Exp. Neurol. 89: 225–236.CrossRefGoogle Scholar
  47. Moshe, S., and Albala, B., 1984, Nigral muscimol infusions facilitate the development of seizures in immature rats. Dev. Brain Res. 13: 305–308.CrossRefGoogle Scholar
  48. Olney, J.W., Collins, R.C., and Sloviter, R.S., 1986, Excitotoxic mechanisms of epileptic brain damage. Adv. Neurol. 44: 857–877.Google Scholar
  49. Patel, S., Millan, M., Mello, L., and Meldrum, B., 1986, 2-Amino-7-phosphonoheptanoic acid (2APH) infusion into entopeduncular nucleus protects against limbic seizures in rats. Neurosci. Lett. 64: 226–230.CrossRefGoogle Scholar
  50. Paz, C., Reygadas, E., and Fernandez-Guardiola, A., 1985, Amygdala kindling in chronically cer-ebellectomized cats. Exp. Neurol. 88: 418–424.CrossRefGoogle Scholar
  51. Penry, J.K., 1975, Perspectives in complex partial seizures. Adv. Neurol. 11: 1–14.Google Scholar
  52. Piredda, S., and Gale, K., 1985, Evidence that the deep prepiriform cortex contains a crucial epileptogenic site. Nature 317: 623–625.CrossRefGoogle Scholar
  53. Piredda, S., and Gale, K., 1986a, Anticonvulsant action of 2-amino-7-phosphonoheptanoic acid and muscimol in the deep prepiriform cortex. Eur. J. Pharmacol. 120: 115–118.CrossRefGoogle Scholar
  54. Piredda, S., and Gale, K., 1986b, Role of excitatory amino acid transmission in the genesis of seizures elicited from the deep prepiriform cortex. Brain Res. 377: 205–210.CrossRefGoogle Scholar
  55. Piredda, S., Pavlick, M., and Gale, K., 1987, Anticonvulsant effects of GABA elevation in the deep prepiriform cortex. Epilepsy Res. 1: 102–106.CrossRefGoogle Scholar
  56. Racine, R., 1972, Modification of seizure activity by electrical stimulation. II. Motor seizures. Electro-encephalogr. Clin. Neurophysiol. 32: 281–294.CrossRefGoogle Scholar
  57. Raines, A., and Anderson, R.J., 1976, The effects of acute cerebellectomy on maximal electroshock seizures and the anticonvulsant efficacy of diazepam in the rat. Epilepsia 17: 177–182.CrossRefGoogle Scholar
  58. Raines, A., Helke, C.J., Iadarola, M.J., Britton, L.W., and Anderson, R.J., 1976, Blockade of the tonic hindlimb extensor component of maximal electroshock and pentylenetetrazol-induced seizures by drugs acting on muscle and muscle spindle systems: A perspective on method. Epilepsia 17: 395–402.CrossRefGoogle Scholar
  59. Raines, A., Mahany, T.M., Baizer, L., Swope, S., and Hershkowitz, N., 1985, Description and analysis of the myotonolytic effects of Phenytoin in the decerebrate cat: Implications for potential utility of Phenytoin in spastic disorders. J. Pharmacol. Exp. Ther. 232: 283–294.Google Scholar
  60. Raines, A., Henderson, T.R., Swinyard, E.A., and Dretchen, K.L., 1989. Comparison of midazolam and diazepam by the intramuscular route for the seizures in a mouse model of status epilepticus, Epilepsia, in press.Google Scholar
  61. Reigel, C.E., Dailey, J.W., and Jobe, P.C., 1986, The genetically epilepsy-prone rat: An overview of seizure prone characteristics and responsiveness to anticonvulsant drugs. Life Sci. 39: 763–774.CrossRefGoogle Scholar
  62. Shulman, A., and Laycock, G.M., 1967, Action of central nervous system stimulant and depressant drugs in the intact animal, Eur. J. Pharmacol. 2: 17–25.CrossRefGoogle Scholar
  63. Stevens, J.R., Phillips, I., and deBeaurepaire, R., 1988, Gamma-vinyl-GABA in endopiriform area suppresses kindled amygdala seizures. Epilepsia 29: 404–411.CrossRefGoogle Scholar
  64. Swinyard, E., 1972, Electrically induced convulsions. In: Experimental Models of Epilepsy, eds. D. Purpura, J. Penry, D. Tower, D. Woodbury, and R. Walters; Raven Press, New York, pp. 433–458.Google Scholar
  65. Tanaka, K., and Kawasaki, Y., 1957, Effects of variation in stimulus intensity on maximal electroshock seizure pattern in the decerebrate and phenobarbital-treated mice. Yonago Acta Medica 2: 60–64.Google Scholar
  66. Tanaka, K., and Mishima, O., 1953, The localization of the center dealing with the tonic extensor seizure of electroshock. Jpn. J. Pharmacol. 3: 6–9.CrossRefGoogle Scholar
  67. Turski, W.A., Cavalhiero, E.A., Schwartz, M., Czuczwar, S.J., Kleinrok, Z., and Turski, L., 1983, Limbic seizures produced by pilocarpine in rats: Behavioral, electroencephalographic and neuropathological study. Behau. Brain Res. 9: 315–336.CrossRefGoogle Scholar
  68. Turski, L., Cavalheiro, E., Turski, W., and Meldrum, B., 1986a, Excitatory neurotransmission within substantia nigra pars reticulata regulates threshold for seizures produced by pilocarpine in rats: Effects of intranigral 2-amino-7-phosphonoheptanoate and N-methyl-D-aspartate. Neuroscience 18: 61–77.CrossRefGoogle Scholar
  69. Turski, L., Cavalheiro, E.A., Schwarz, M., Turski, F.W.A., DeMorales Mello, L.E.A., Bortolotto, Z.A., Klockgether, T., and Sontag, K.H., 1986b, Susceptibility to seizures produced by pilocarpine in rats after microinjections of isoniazid or gamma-vinyl-GABA into the substantia nigra. Brain Res. 370: 294–309.CrossRefGoogle Scholar
  70. Zhong, P., Schlichting, J., and Gale, K., 1988, Effects of ethosuximide and Phenytoin on convulsions induced by focal injection of bicuculline in area tempestas: Comparison with effects on systemic pentylenetetrazol-induced convulsions. Poster presented at Generalized Epilepsy Symposium, Montreal.Google Scholar

Copyright information

© Birkhäuser Boston, Inc. 1990

Authors and Affiliations

  • K. Gale

There are no affiliations available

Personalised recommendations