Role of Dopamine in Generalized Photosensitive Epilepsy: Electroencephalographic and Biochemical Aspects

  • L. F. Quesney
  • T. A. Reader


Epileptic photosensitivity is an abnormal electroencephalographic (EEG) and clinical response to flickering environmental light or pattern stimulation. The EEG hallmark of epileptic photosensitivity is the photoconvulsive response, consisting of bursts of generalized and bilaterally synchronous spike-and-wave (SW) or polyspike-and-wave activity induced by photic stimulation (Meisen, 1969; Hughes, 1960; Jeavons and Harding, 1975).


Occipital Cortex Photic Stimulation Photic Stimula Radioenzymatic Assay Papio Papio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G.K., and Bunney, B.S., 1977, Pharmacological characterization of dopamine auto-receptors by microiontophoretic single-cell recording studies. Adv. Biochem. Psychophar-macol. 16: 433–488.Google Scholar
  2. Andén, N.E., Rubenson, A., Fuxe, K., and Hökfelt, T., 1967, Evidence for dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol. 19: 627–629.CrossRefGoogle Scholar
  3. Anzelark, G., Marrosu, F., and Meldrum, B., 1981, Dopamine agonists in reflex epilepsy. In: Neurotransmitters, Seizures and Epilepsy, P.L. Morselli, K.G. Lloyd, W. Loscher, B. Meldrum, and E.H. Reynolds, eds, Raven Press, New York, pp. 251–262.Google Scholar
  4. Ashton, C., Anzelark, G., and Meldrum, B., 1976, Inhibition of reflex epilepsy by N-n-propylnorapomorphine. Eur. J. Pharmacol. 39: 399–401.CrossRefGoogle Scholar
  5. Axelrod, J., and Tomchick, R., 1958, Enzymatic O-methylation of epinephrine and other catechols. Biol. Chem. 233: 313–326.Google Scholar
  6. Berger, B., Tassin, J.P., Blanc, G., Moyne, M.A., and Thierry, A.M., 1974, Histochemical confirmation for dopaminergic innervation of the rat cerebral cortex after destruction of the noradrenergic ascending pathways. Brain Res. 81: 332–337.CrossRefGoogle Scholar
  7. Berger, B., Verney, C., Alvarez, C., Vigny, A., and Helle, K.B., 1985, New dopaminergic terminal fields in the motor, visual (area 18b) and retrosple-nial cortex in the young and adult rat. Immunocy-tochemical and catecholamine histochemical analyses. Neuroscience 165: 983–998.CrossRefGoogle Scholar
  8. Bickford, R.G., Sem-Jacobsen, C.W., White, P.T., and Daly, D., 1952, Some observations on mechanisms of photic and photometrazol activation. Electroencephalogr. Clin. Neurophysiol. 4: 275–282.CrossRefGoogle Scholar
  9. Binnie, C.D., Wilkins, A.J., and Dekorte, R.A., 1981, Interhemispheric differences in photosensitive epilepsy, II. Intermittent photic stimulation. Electroencephalogr. Clin. Neurophysiol. 52: 469–472.CrossRefGoogle Scholar
  10. Briére, R., Sherwin, A.L., Robitaille, Y., Olivier, A., Quesney, L.F., and Reader, T.A., 1986, α-Adrenoceptors are decreased in human epileptic foci. Ann. Neurol. 19: 26–30.CrossRefGoogle Scholar
  11. Bylund, D.B.,and Uprichard, D.C., 1983, Characterization of α1- and α2-adrenergic receptors. Int. Rev. Neurobiol. 24: 343–431.CrossRefGoogle Scholar
  12. Cox, B., and Lomax, P., 1976, Brain amines and spontaneous epileptic seizures in the Mongolian gerbil. Pharmacol. Biochem. Behav. 4: 263–267.CrossRefGoogle Scholar
  13. Cuello, A.C., Hiley, R., and Iversen, L.L., 1973, Use of catechol-O-methyl-transferase for the enzyme radiochemical assay of dopamine. J. Neu-rochem. 21: 1337–1340.Google Scholar
  14. Delgado-Escueta, A.-V., 1984, Summation of the workshops and discussion: The new wave of research in the epilepsies. Ann. Neurol. 16(Suppl): S145–S158.CrossRefGoogle Scholar
  15. Doose, H., 1980, Genetic factors in childhood epilepsy. In: Advances in Epileptology: XIth Epilepsy International Symposium, R. Canger, F. Angeleri, and J.R. Penry, eds, Raven Press, New York, pp. 289–296.Google Scholar
  16. Doose, H., Gerken, H., Horstmann, T., and Volzke, E., 1973, Genetics factors in spike and wave absences. Epilepsia 14: 57–75.CrossRefGoogle Scholar
  17. Eadie, G.S., 1952, On the evaluation of the constants Vm and Km in enzyme reactions. Science 116;658.CrossRefGoogle Scholar
  18. Ernst, A.M., 1965, Relation between the action of dopamine and apomorphine and their O-methylated derivatives upon the CNS. Psycho-pharmacologia (Berl.) 7: 391–399.CrossRefGoogle Scholar
  19. Ernst, A.M., 1967, Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia (Berl.) 10: 316–323.CrossRefGoogle Scholar
  20. Ernst, A.M., and Smelik, P.G., 1966, Site of action of dopamine and apomorphine on compulsive gnawing behaviour in rats. Experientia 22: 37–38.CrossRefGoogle Scholar
  21. Felice, L.J., Felice, J.D., and Kissinger, P.T., 1978, Determination of catecholamines in rat brain parts by reverse phase ion-pair liquid chromatography. J. Neurochem. 31: 1461–1465.CrossRefGoogle Scholar
  22. Fisher-Williams, M., Poncet, M., Riche, D., and Naquet, R., 1968, Light-induced epilepsy in the baboon, Papio papio: Cortical and depth recordings. Electroencephalogr. Clin. Neurophy-siol. 25: 557–569.CrossRefGoogle Scholar
  23. Gastaut, H., 1950, Combined photic and metrazol activation of the brain. Electroencephalogr. Clin. Neurophysiol. 2: 249–261.CrossRefGoogle Scholar
  24. Gastaut, H., and Hunter, J., 1950, An experimental study of the mechanism of photic activation in idopathic epilepsy. Electroencephalogr. Clin. Neurophysiol. 2: 263–287.CrossRefGoogle Scholar
  25. Hofstee, B.H., 1952, On the evaluation of the constants Vm and Km in enzyme reactions. Science 116: 329–331.CrossRefGoogle Scholar
  26. Hughes, J.R., 1960, Usefulness of photic stimulation in routine clinical electroencephalography. Neurology (Minneap.) 10: 777–782.Google Scholar
  27. Jasper, H.H., and Ajmone-Marsan, C.A., 1954, A Stereotaxic Atlas of the Diencephalon of the Cat, National Research Council of Canada, Ottawa.Google Scholar
  28. Jeavons, P.M., and Harding, F.F.A., 1965, Photosensitive Epilepsy. A Review of the Literature and a Study of 460 Patients, William Heinemann, London.Google Scholar
  29. Johnson, D.D., Jaju, A.T., Ness, L., Richardson, J.S., and Crawford, R.D., 1981, Brain norepinephrine, dopamine and 5-hydroxytryptamine concentration abnormalities and their role in the high seizure susceptibility of epileptic chickens. Can. J. Physiol. Pharmacol. 59: 144–149.CrossRefGoogle Scholar
  30. Jones, B.E., Harper, S.T., and Halaris, A.E., 1977, Effects of locus coerulus lesions upon cerebral monoamine content, sleep-wakefulness states, and the response to amphetamine in the cat. Brain Res. 124: 473–496.CrossRefGoogle Scholar
  31. Kehr, W., Lindquist, M., and Carlsson, A.J., 1976, Distribution of dopamine in the rat cerebral cortex. J. Neural. Transm. 38: 173–180.CrossRefGoogle Scholar
  32. Keller, R., Oke, A., Mefford, I., and Adams, R.N., 1976, Liquid chromatographic analysis of catecholamines. Routine assay for regional brain mapping. Life Sci. 19: 995–1004.CrossRefGoogle Scholar
  33. Kostopoulos, G., 1977, Physiology and Pharmacology Studies on Synaptic Transmission in the Mammalian Brain, Ph.D. Thesis. University of Saskatchewan, Saskatoon, Sask, pp. 159–170.Google Scholar
  34. Lindvall, O., Björklund, A., Moore, R.Y., and Stenevi, U., 1974, Mesencephalic dopamine neurons projecting to neocortex. Brain Res. 81: 325–331.CrossRefGoogle Scholar
  35. Lowry, O.H., Rosebrough, N.J., Fair, A.L., and Randall, R.J., 1951, Protein measurements with Folin phenol reagent. J. Biol. Chem. 193: 265–275.Google Scholar
  36. Meldrum, B.S., 1982, Epilepsy. In: Disorders of Neurohumoral Transmission, T.J. Crow, ed. Academic Press, London, pp. 183–254.Google Scholar
  37. Meldrum, B.S., Anzelark, G., and Trimble, M., 1975, Drugs modifying dopaminergic activity and behaviour, the EEG and epilepsy in Papio papio. Eur. J. Pharmacol. 32: 203–215.Google Scholar
  38. Meisen, S., 1959, The value of photic stimulation in the diagnosis of epilepsy, J. Nerv. Dis. 128: 508–519.Google Scholar
  39. Menini, Ch., 1976, Role du cortex frontal dans l’ép-ilepsie photosensible due singe Papio papio. J. Physiol. (Paris) 72: 5–44.Google Scholar
  40. Miach, P.J., Dausse, J.P., and Meyer, P., 1978. Direct biochemical demonstration of two types of alpha-adrenoceptors in rat brain. Nature 274: 492–494.CrossRefGoogle Scholar
  41. Naquet, R., Catier, J., and Menini, Ch., 1975, Neurophysiology of photically induced epilepsy in Papio papio. In: Advances in Neurology, B.S. Meldrum, and C.D. Marsden, eds, Raven Press, New York, pp. 107–118.Google Scholar
  42. Palkovits, M., Zaborsky, L., Brownstein, M.J., Fekete, M.I., Herman, J.P., and Kanycska, B., 1979, Distribution of norepinephrine and dopamine in cerebral cortical areas of the rat. Brain Res. Bull. 4: 593–601.CrossRefGoogle Scholar
  43. Papez, J.W., 1929, Comparative Neurology. Hafner Publishing Co., New York.Google Scholar
  44. Phillis, J.W., and Tebecis, A.K., 1969, The response of thalamic neurones to iontophoretically applied monoamines. J. Physiol. (Lond.) 193: 715–743.Google Scholar
  45. Phillis, J.W., 1984, Microiontophoretic studies of cortical biogenic amines. In: Neurology and Neurobiology, Vol. 10. Monoamine Innervation of Cerebral Cortex, L. De Scarries, T.A. Reader, and H.H. Jasper, eds, Alan R. Liss, New York, pp. 175–194.Google Scholar
  46. Pimoule, C., Scatton, B., and Langer, S.Z., 1983, [3H]RX 781094: A new antagonist ligand labels α2-adrenoceptors in the rat brain cortex. Eur. J. Pharmacol. 95: 79–85.CrossRefGoogle Scholar
  47. Quesney, L.F., 1981, Dopamine and generalized photosensitive epilepsy. In: Neurotransmitters, Seizures and Epilepsy, P.L. Morselli, K.G. Lloyd, W. Loscher, B. Meldrum, and E.H. Reynolds, eds, Raven Press, New York, pp. 362–274.Google Scholar
  48. Quesney, L.F., 1984, Pathophysiology of generalized photosensitive epilepsy in the cat. Epilepsia 25: 61–69.CrossRefGoogle Scholar
  49. Quesney, L.F., and Gloor, P., 1978, Generalized penicillin epilepsy in the cat: Correlation between electrophysiological data and distribution of 14C-penicillin in the brain. Epilepsia 19: 35–45.CrossRefGoogle Scholar
  50. Quesney, L.F., and Reader, T.A., 1984, Role of cortical catecholamine depletion in the genesis of epileptic photosensitivity. In: Neurotransmitters, Seizures and Epilepsy Vol. II, R.G. Fariello, P.L. Morselli, K.G. Lloyd, L.F. Quesney, and J. Engel, Jr., eds, Raven Press, New York, pp. 11–21.Google Scholar
  51. Quesney, L.F., Andermann, F., Lal, S., and Prelevic, S., 1980, Transient abolition of generalized photosensitive epileptic discharge in man by apomorphine, a dopamine receptor agonist. Neurology (NY) 30: 1169–1174.Google Scholar
  52. Quesney, L.F., Andermann, F., and Gloor, P., 1981. Dopaminergic mechanism in generalized photosensitive epilepsy. Neurology (NY) 31: 1542–1544.Google Scholar
  53. Reader, T.A., 1978, The effects of dopamine, noradrenaline and serotonin in the visual cortex of the cat. Experientia 34: 1586–1588.CrossRefGoogle Scholar
  54. Reader, T.A., 1981, Distribution of catecholamines and serotonin in the rat cerebral cortex: Absolute levels and relative proportions. J. Neural. Transm. 50: 13–27.CrossRefGoogle Scholar
  55. Reader, T.A., 1982, Catecholamines and serotonin in rat frontal cortex after PCPA and 6-OHDA: Absolute amounts and ratios. Brain Res. Bull. 8: 527–534.CrossRefGoogle Scholar
  56. Reader, T.A., 1983, The role of the catecholamines in neuronal excitability. In: Neurology and Neurobiology, Vol. 2, Basic Mechanisms of Neuronal Hyperexcitability, H.H. Jasper and N.M. Van Gelder, eds, Alan R. Liss, New York, pp. 281–321.Google Scholar
  57. Reader, T.A., and Briere, R., 1983, Long-term unilateral noradrenergic denervation: Monoamine content and 3H-prazosin binding sites in rat neocortex. Brain Res. Bull. 11: 687–692.CrossRefGoogle Scholar
  58. Reader, T.A., and Jasper, H.H., 1984, Interactions between monoamines and other transmitters in cerebral cortex. In: Neurology and Neurobiology, Vol. 10, Monoamine Innervation of Cerebral Cortex, L. Descarries, T.A. Reader, and H.H. Jasper, eds, Alan R. Liss, New York, pp. 195–225.Google Scholar
  59. Reader, T.A., and Quesney, L.F., 1986, Dopamine in the visual cortex of the cat. Experientia 42: 1242–1244.CrossRefGoogle Scholar
  60. Reader, T.A., De Champlain, J., and Jasper, H.H., 1976, Catecholamines released from cerebral cortex in the cat. Decrease during sensory stimulation. Brain Res. 111: 95–108.CrossRefGoogle Scholar
  61. Reader, T.A., Masse, P., and De Champlain, J., 1979b, The intracortical distribution of norepinephrine, dopamine and serotonin in the cerebral cortex of the cat. Brain Res. 177: 499–513.CrossRefGoogle Scholar
  62. Reader, T.A., Ferron, A., Descarries, L., and Jasper, H.H., 1979a, Modulatory role for biogenic amines in the cerebral cortex. Microion-tophoretic studies. Brain Res. 160: 217–229.CrossRefGoogle Scholar
  63. Reader, T.A., Briére, R., and Grondin, L., 1986, Alpha-1-and alpha-2-adrenoceptor binding in cerebral cortex: Role of disulfide and sulfhydryl groups. Neurochem. Res. 11: 9–27.CrossRefGoogle Scholar
  64. Roos, B.E., 1969, Decrease in homovanillic acid as evidence for dopamine receptor stimulation by apomorphine in the neostriatum of the rat. J. Pharm. Pharmacol. 21: 263–264.CrossRefGoogle Scholar
  65. Rosenthal, H.E., 1967, A graphic method for the determination and presentation of binding parameters in a complex system. Anal. Biochem. 20: 523–532.CrossRefGoogle Scholar
  66. Scatchard, G., 1949, Attraction of proteins for small molecules and ions. Ann. NY Acad. Sci. 51: 660–672.CrossRefGoogle Scholar
  67. Sherwin, A.L., Quesney, F., Gauthier, S., Olivier, A., Robitaille, Y., McQuaid, P., Harvey, C., and Van Gelder, N., 1984, Enzymic changes in actively spiking areas of human epileptic cerebral cortex. Neurology (Cleveland) 34: 927–933.Google Scholar
  68. Vertsteeg, D.H.G., Van Der Gugten, J., De Jong, W., and Plakovits, M., 1976, Regional concentration of noradenaline and dopamine in rat brain. Brain Res. 113: 565–574.Google Scholar
  69. Wada, J.A., and Naquet, R., 1972, Examination of neural mechanisms involved in photogenic seizure susceptibility in epileptic Senegalese Papio papio. Epilepsia 13: 344–345.Google Scholar
  70. Wada, J.A., Catier, J., Charmasson, G., Menini, Ch., and Naquet, R., 1973, Further examination of neural mechanisms underlying photosensitivity in the epileptic Senegalese baboon Papio papio. Electroencephalogr. Clin. Neurophysiol. 34: 786.Google Scholar
  71. Wilkins, A.J., Darby, C.E., and Binnie, C.D., 1979, Neurophysiological aspects of pattern-sensitive epilepsy. Brain 102: 1–25.CrossRefGoogle Scholar
  72. Wilkins, A.J., Binnie, C.D., and Darby, C.E., 1981, Interhemispheric differences in photosensitive epilepsy. I. Pattern sensitive thresholds. Electroencephalogr. Clin. Neurophysiol. 52: 461–468.CrossRefGoogle Scholar
  73. Zivin, J.A., and Waud, D.R., 1982, How to analyse binding, enzyme and uptake data: The simplest case, a single phase. Life Sci. 30: 1407–1422.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston, Inc. 1990

Authors and Affiliations

  • L. F. Quesney
  • T. A. Reader

There are no affiliations available

Personalised recommendations