Advertisement

Focal and Generalized Epileptiform Activity in the Cortex: In Search of Differences in Synaptic Mechanisms, Ionic Movements, and Long-Lasting Changes in Neuronal Excitability

  • M. Avoli
  • P. Gloor
  • G. Kostopoulos

Abstract

The aim of this chapter is to compare the cellular and the ionic mechanisms that characterize the focal and generalized epileptiform discharges recorded in the cortex. In this review of experimental findings obtained in both in vivo and in vitro brain preparations, we have set as our goal understanding the differences that might exist at the cellular level in these epileptic patterns in humans.

Keywords

GABAA Receptor Hippocampal Slice Epileptiform Discharge Convulsive Seizure Wave Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajmone-Marsan, C., 1969, Acute effects of topical epileptogenic agents, in: Basic Mechanisms of the Epilepsies (H.H. Jasper, A.A. Ward, Jr., and A. Pope, eds), Little, Brown, Boston, pp. 299–319.Google Scholar
  2. Alger, B.E., and Nicoll, R.A., 1982a, Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro, J. Physiol. (Lond.) 328: 105–123.Google Scholar
  3. Alger, B.E., and Nicoll, R.A., 1982b, Pharmacological evidence for two kinds of GABA receptors on rat hippocampal pyramidal cells studied in vitro, J. Physiol. (Lond.) 328: 125–141.Google Scholar
  4. Andersen, P., Eccles, J.C., and Løying, Y., 1964a, Location of postsynaptic inhibitory synapses on hippocampal pyramids, J. Neurophysiol. 27: 592–607.Google Scholar
  5. Andersen, P., Eccles, J.C., and Løyning, Y., 1964b, Pathway of postsynaptic inhibition in the hippocampus, J. Neurophysiol. 27: 608–619.Google Scholar
  6. Andersen, P., Dingledine, B., Gjerstad, L., Langmoen, I.A., and Mosfeldt-Laursen, G., 1980, Two different responses of hippocampal pyramidal cells to application of gamma-aminobutyric acid, J. Physiol. (Lond.) 305: 279–296.Google Scholar
  7. Avoli, M., 1984, Penicillin-induced hyperexcitabil-ity in the “in vitro” hippocampal slice can be unrelated to impairment of somatic inhibition, Brain Res 370: 154–158.CrossRefGoogle Scholar
  8. Avoli, M., 1988, GABAergic mechanisms and epileptic discharges, in: Neurotransmitter and Cortical Function: From Molecules to Mind (M. Avoli, T.A. Reader, R.W. Dykes, and P. Gloor, eds.), Plenum, New York, pp. 187–205.CrossRefGoogle Scholar
  9. Avoli, M., and Perreault, P.A., 1987, GABAergic depolarizing potential in the hippocampus disclosed by the convulsant 4-aminopyradine, Brain Res. 400: 191–195.CrossRefGoogle Scholar
  10. Avoli, M., Siatitsas, I., Kostopoulos, G., and Gloor, P., 1981, Effects of post-ictal depression on experimental spike and wave discharges, Electroen-cephalogr. Clin Neurophysiol. 52: 372–374.CrossRefGoogle Scholar
  11. Ayala, G.F., Dichter, M., Gumnit, R.J., Matsumoto, H., and Spencer, W.E., 1973, Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysio-logical explanation of brief paroxysms, Brain Res. 52: 1–17.CrossRefGoogle Scholar
  12. Ben Ari, Y., Krnjevic, K., Reiffenstein, R.J., and Rehinhardt, W., 1981, Inhibitory conductance changes and action of GABA in rat hippocampus, Neuroscience 6: 2445–2463.CrossRefGoogle Scholar
  13. Berkovic, S.F., Andermann, F., Andermann, E., and Gloor, P., 1987, Concepts of absence epilepsies: Discrete syndromes or biological continuum? Neurology 37: 993–1000.Google Scholar
  14. Buckle, P.J., and Haas, H.L., 1982, Enhancement of synaptic transmission by 4-aminopyridine in hippocampal slices of the rat, J. Physiol. (Lond.) 326: 109–122.Google Scholar
  15. Collingridge, G.L., and Bliss, T.V.P., 1987, NMDA-receptors—their role in long term potentiation, Trends Neurosci. 10: 263–265.CrossRefGoogle Scholar
  16. Connor, J.A., Wadman, W.J., Hodeberger, P.E., and Wong, R.K.S., 1988, Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons, Science 240: 649–653.CrossRefGoogle Scholar
  17. Dalby, M.A., 1969, Epilepsy and 3 per second spike and wave rhythms. A clinical, electroencepha-lographic and prognostic analysis of 346 patients, Acta Neurol. Scand. 45:Suppl. 40: 183.Google Scholar
  18. Davenport, J., Schwindt, P.C., and Crill, W.E., 1979, Epileptic doses of penicillin do not reduce a monosynaptic GABA-mediated post-synaptic inhibition in the intact anesthetized cat, Exp. Neurol. 65: 552–572.CrossRefGoogle Scholar
  19. Dingledine, R., and Gjerstad, L., 1980, Reduced inhibition during epileptiform activity in the in vitro hippocampal slice, J. Physiol. (Lond.) 305: 297–313.Google Scholar
  20. Dreifuss, J.D., Kelly, J.S., and Krnjevic, K., 1969, Cortical inhibition and gamma-aminobutyric acid, Exp. Brain Res. 9: 137–154.CrossRefGoogle Scholar
  21. Fisher, R.S., and Prince, D.A., 1977, Spike-wave rhythms in cat cortex induced by parenteral penicillin. II. Cellular features., Electroencephalogr. Clin. Neurophysiol. 42: 625–639.CrossRefGoogle Scholar
  22. Galvan, M., Grafe, P., and ten Bruggengate, G., 1982, Convulsant actions of 4-aminopyridine on the guinea pig olfactory cortex slice, Brain Res. 241: 75–86.CrossRefGoogle Scholar
  23. Giaretta, D., Kostopoulos, G., Gloor, P., and Avoli, M., 1985, Intracortical inhibitory mechanisms are preserved in feline generalized penicillin epilepsy, Neurosci. Lett. 59: 203–208.CrossRefGoogle Scholar
  24. Giaretta, D., Avoli, M., and Gloor, P., 1987, Intracellular recordings in pericruciate neurons during spike and wave discharges of feline generalized penicillin epilepsy, Brain Res. 405: 68–79.CrossRefGoogle Scholar
  25. Gloor, P., 1989, Epilepsy: Relationships between electrophysiology and intracellular mechanisms involving second messengers and gene expression, Can. J. Neurol. Sci. 16: 8–21.Google Scholar
  26. Gloor, P., and Fariello, R.G., 1988, Generalized epilepsy: Some of its cellular mechanisms differ from those of focal epilepsy, Trends Neurosci. 11: 63–68.CrossRefGoogle Scholar
  27. Gloor, P., Hall, G., and Coceani, F., 1966, Differential sensitivity of various brain structures to the epileptogenic action of penicillin, Exp. Neurol. 16: 333–348.CrossRefGoogle Scholar
  28. Gowers, W.R., 1881, Epilepsy and other chronic convulsive states, Churchill, London.Google Scholar
  29. Guberman, A., Gloor, P., and Sherwin, A.L., 1975, Response of generalized penicillin epilepsy in the cat to ethosuximide and diphenylhydantoin, Neurology 25: 758–764.Google Scholar
  30. Heinemann, U., Lux, H.D., and Gutnick, M.J., 1977, Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat, Exp. Brain Res. 27: 237–243.CrossRefGoogle Scholar
  31. Hotson, J.R., and Prince, D.A., 1980, A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons, J. Neurophysiol. 43: 409–419.Google Scholar
  32. Jasper, H.H., and Droogleever-Fortuyn, J., 1946, Experimental studies on the functional anatomy of petit mal epilepsy, Res. Publ. Ass. Res. Nerv. Ment. Dis. 26: 272–298.Google Scholar
  33. Johnston, D., and Brown, T.H., 1981, Giant synaptic potential hypothesis for epileptiform activity, Science 211: 294–297.CrossRefGoogle Scholar
  34. Johnston, D., and Brown, T.H., 1984, Mechanisms of neuronal burst generation, in: Electrophysiology of Epilepsy (P.A. Schwartzkroin and H.V. Wheal, eds.), Academic Press, London, pp. 277–301.Google Scholar
  35. Korn, S.J., Giacchino, J.L., Chamberlin, N.L., and Dingledine, R., 1987, Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition, J. Neurophysiol. 57: 325–340.Google Scholar
  36. Kostopoulos, G., 1986, Neuronal sensitivity to GABA and glutamate in generalized epilepsy with spike and wave discharges, Exp. Neurol. 92: 20–36.CrossRefGoogle Scholar
  37. Kostopoulos, G., Avoli, M., and Gloor, P., 1983, Participation of cortical recurrent inhibition in the genesis of the spike and wave discharges in feline generalized penicillin epilepsy, Brain Res. 267: 101–112.CrossRefGoogle Scholar
  38. Krnjevic, K., 1974, Chemical nature of synaptic transmission invertebrates, Physiol. Rev. 54: 419–450.CrossRefGoogle Scholar
  39. Krnjevic, K., 1983, GABA mediated inhibitory mechanisms in relation to epileptic discharge, in: Basic Mechanisms of Neuronal Hyper excitability (H.H. Jasper and N.M. van Gelder, eds), Liss, New York, pp. 249–280.Google Scholar
  40. Krnjevic, K., and Schwartz, S., 1967, The action of γ-aminobutyric acid on cortical neurons, Exp. Brain Res. 3: 320–336.CrossRefGoogle Scholar
  41. Krnjevic, K., Morris, M.E., and Reiffenstein, R.J., 1982, Stimulation evoked changes in extracellular K+ and Ca++ concentrations in pyramidal layer of the rat hippocampus, Can. J. Physiol. Pharmacol. 60: 1643–1657.CrossRefGoogle Scholar
  42. Lebeda, F.J., Hablitz, J.J., and Johnston, D., 1982, Antagonism of GABA-mediated responses by D-tubocurarine in hippocampal neurons, J. Neuro-physiol. 48: 622–632.Google Scholar
  43. Lennox, W.G., and Lennox, M.A., 1960, Epilepsy and Related Disorders, Vol. 1, Little, Brown, Boston.Google Scholar
  44. Lux, H.D., Heinemann, U., and Dietzel, I., 1986, Ionic changes and alterations in the size of the extracellular space during epileptic activity, in: Advances in Neurology, Vol. 44 (A.V. Delgado-Escueta, A.A. Ward, Jr., D.M. Woodbury, and R.J. Porter, eds), Raven Press, New York, pp. 619–639.Google Scholar
  45. Matsumoto, H., and Ajmone-Marsan, C., 1964a, Cortical cellular phenomena in experimental epilepsy: Interictal manifestations, Exp. Neurol. 9: 286–304.CrossRefGoogle Scholar
  46. Matsumoto, H., and Ajmone-Marsan, C., 1964b, Cortical cellular phenomena in experimental epilepsy: Ictal manifestations, Exp. Neurol. 9: 305–326.CrossRefGoogle Scholar
  47. McCarren, M., and Alger, B.E., 1985, Use-dependent depression of IPSPs in rat hippocampal pyramidal cells in vitro, J. Neurophysiol. 53: 557–571.Google Scholar
  48. Newberry, N.R., and Nicoll, R.A., 1984, A bicu-culline-resistant inhibitory post-synaptic potential in rat hippocampal pyramidal cells in vitro, J. Physiol. (Lond.) 348: 239–254.Google Scholar
  49. Newberry, N.R., and Nicoll, R.A., 1985, Comparison of the action of baclofen with γ-aminobutyric acid on rat hippocampal pyramidal cells in vitro, J. Physiol. (Lond.) 360: 161–185.Google Scholar
  50. Novak, L., Bregestovski, P., Ascher, P., Herbert, A., and Prochiantz, A., 1984, Magnesium gates glutamic activated channels in mouse central neurons, Nature (Lond.) 307: 462–465.CrossRefGoogle Scholar
  51. Perreault, P., and Avoli, M., 1988, A depolarizing inhibitory postsynaptic potential activated by synaptically released γ-aminobutyric acid under physiological conditions in rat hippocampal pyramidal cells, Can. J. Physiol. Pharmacol. 66: 1100–1102.CrossRefGoogle Scholar
  52. Perreault, P., and Avoli, M., 1989, Effects of low concentrations of 4-aminopyridine on CA1 pyramidal cells of the hippocampus, J. Neurophysiol. 61(5): 953–970.Google Scholar
  53. Prince, D.A., 1978, Neurophysiology of epilepsy, Ann. Rev. Neurosci. 1: 395–415.CrossRefGoogle Scholar
  54. Prince, D.A., and Connors, B.W., 1986, Mechanisms of interictal epileptogenesis, in: Advances in Neurology, (A.V. Delgado-Escueta, A.A. Ward, Jr., D.M. Woodbury, and R.J. Porter, eds), Raven Press, New York, pp. 275–299.Google Scholar
  55. Prince, D.A., and Farrell, D., 1969, “Centren-cephalic” spike-wave discharges following parenteral penicillin injection in the cat. Neurology (Minn.) 19: 309–310.Google Scholar
  56. Pumain, R., Kurcewicz, I., and Louvel, J., 1983, Fast extracellular calcium transients: Involvement in epileptic processes, Science 222: 177–179.CrossRefGoogle Scholar
  57. Pumain, R., Menini, C., Heinemann, U., Louvel, J., and Siva-Barrat, C., 1985, Chemical synaptic transmission is not necessary for epileptic seizures to persist in the baboon Papio papio, Exp. Neurol. 89: 250–258.CrossRefGoogle Scholar
  58. Quesney, L.F., and Gloor, P., 1978, Generalized penicillin epilepsy in the cat: Correlation between electrophysiological data and distribution of 14C-penicillin in the brain, Epilepsia 19: 34–45.Google Scholar
  59. Reynolds, E.H., 1988, The prevention of chronic epilepsy, Epilepsia, 29,Suppl. 1: 525–528Google Scholar
  60. Reynolds, E.H., Elwes, R.D.C., and Shorvon, S.D., 1983, Why does epilepsy become intractable? Lancet 2: 952–954.CrossRefGoogle Scholar
  61. Schwartzkroin, P.A., and Pedley, D., 1979, Slow depolarizing potentials in “epileptic” neurons, Epilepsia 20: 267–277.CrossRefGoogle Scholar
  62. Schwartzkroin, P.A., and Prince, D.A., 1980, Changes in excitatory and inhibitory synaptic potentials leading to epileptogenic activity, Brain Res. 183: 61–76.CrossRefGoogle Scholar
  63. Schwartzkroin, P.A., and Stafstrom, C.E., 1980, Effects of EGTA on the calcium activated afterhyperpolarization in hippocampal CA3 pyramidal cells, Science 210: 1125–1126.CrossRefGoogle Scholar
  64. Stelzer, A., Kay, A.R., and Wong, R.K.S., 1988, GABAA-receptor function in hippocampal cell is maintained by phosphorylation factors, Science 241: 339–341.CrossRefGoogle Scholar
  65. Tancredi, V., and Avoli, M., 1987, Control of spontaneous epileptiform discharges by extracellular potassium: An “in vitro” study in the CA1 sub-field of the hippocampal slice, Exp. Brain Res. 67: 363–372.CrossRefGoogle Scholar
  66. Thallman, R.H., and Ayala, G.F., 1983, A late increase in K conductance follows synaptic stimulation of granule neurons of the dentate gyrus, Neurosci. Lett. 23: 243–248.Google Scholar
  67. Thesleff, S., 1980, Aminopyridines and synaptic transmission, Neuroscience 5: 1413–1419.CrossRefGoogle Scholar
  68. van Gelder, N.M., Siatitsas, I., Menini, C., and Gloor, P., 1984, Feline generalized penicillin epilepsy: Changes in glutamic acid and taurine parallel the progressive increase in excitability of the cortex, Epilepsia 24: 200–213.CrossRefGoogle Scholar
  69. Wong, R.K.S., and Prince, D.A., 1979, Dendritic mechanisms underlying penicillin-induced epileptiform activity, Science 204: 1228–1231.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston, Inc. 1990

Authors and Affiliations

  • M. Avoli
  • P. Gloor
  • G. Kostopoulos

There are no affiliations available

Personalised recommendations