Advertisement

Thalamocortical Relationships in Generalized Epilepsy with Bilaterally Synchronous Spike-and-Wave Discharge

  • P. Gloor
  • M. Avoli
  • G. Kostopoulos

Abstract

One of the most dramatic patterns seen in clinical electroencephalography is generalized spike-and-wave (SW) discharge occurring during a clinical absence attack (see Fig. 14.2A). The abrupt onset and cessation of generalized, bilaterally synchronous, 3 cps SW discharge emerging from a normal cortical EEG background activity has always made attractive the hypothesis that some central pacemaker located in the depths of the brain and projecting diffusely to the cortex was responsible for the origin of SW discharges (Jasper and Kershman, 1941; Penfield and Jasper, 1946, 1954); see also review in Gloor, 1978).

Keywords

Cortical Neuron Cortical Excitability Generalize Epilepsy Wave Discharge Firing Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avoli, M., and Gloor, P., 1981, The effects of transient functional depression of the thalamus on spindles and on bilateral synchronous epileptic discharges of feline generalized penicillin epilepsy, Epilepsia 22: 443–452.CrossRefGoogle Scholar
  2. Avoli, M., and Gloor, P., 1982a, Interaction of cortex and thalamus in spike and wave discharges of feline generalized penicillin epilepsy, Exp. Neurol. 76: 196–217.CrossRefGoogle Scholar
  3. Avoli, M., and Gloor, P., 1982b, Role of the thalamus in generalized penicillin epilepsy: Observations on decorticated cats, Exp. Neurol. 77: 386–402.CrossRefGoogle Scholar
  4. Avoli, M., Siatitsas, I., Kostopoulos, G., and Gloor, P., 1981, Effects of post-ictal depression on experimental spike and wave discharges, Elec-troencephalogr. Clin. Neurophysiol. 52: 372–374.CrossRefGoogle Scholar
  5. Avoli, M., Gloor, P., and Kostopoulos, G., 1982, Cortical and thalamic microphysiology of experimental spike and wave discharges, in: Advances in Epileptology: XIII Epilepsy International Symposium (H. Akimoto, H. Kazamatsuri, M. Seino, and A. Ward, eds.), Raven Press, New York, pp. 493–496.Google Scholar
  6. Avoli, M., Gloor, P., Kostopoulos, G., and Gotman, J., 1983, An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons, J. Neurophysiol. 50: 819–837.Google Scholar
  7. Bennett, F.E., 1953, Intracarotid and intravertebral metrazol in petit mal epilepsy, Neurology 3: 668–673.Google Scholar
  8. Creutzfeldt, O.D., Watanabe, S., and Lux, H.D., 1966, Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity, Electroencephalogr. Clin. Neurophysiol. 20: 19–37.CrossRefGoogle Scholar
  9. Deschênes, M., Paradis, M., Roy, J.P., and Steriade, M., 1984, Electrophysiology of neurons of lateral thalamic nuclei in cat: Resting properties and burst discharges, J. Neurophysiol. 51: 1196–1219.Google Scholar
  10. Giaretta, D., Avoli, M., and Gloor, P., 1987, Intracellular recordings in pericruciate neurons during spike and wave discharges of feline generalized penicillin epilepsy, Brain Res. 405: 68–79.CrossRefGoogle Scholar
  11. Gibbs, F.A., and Gibbs, E.L., 1952, Atlas of Electroencephalography,Vol. 2 Epilepsy, Addison-Wesley P, Cambridge MA, 422 p.Google Scholar
  12. Glenn, L.L., Hada, J., Roy, J.P., Deschênes, M., and Steriade, M., 1982, Anterograde tracer and field potential analysis of the neocortical layer I projection from nucleus ventralis medialis of the thalamus in cat, Neuroscience 7: 1861–1877.CrossRefGoogle Scholar
  13. Gloor, P., 1968, Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge, Epilepsia 9: 249–263.CrossRefGoogle Scholar
  14. Gloor, P., 1969, Neurophysiological bases of generalized seizures termed centrencephalic, in: The Physlopathogenesis of the Epilepsies (H. Gastaut, H. Jasper, J. Bancaud, and A. Waltregny, eds.), Charles C Thomas, Springfield, IL, pp. 209–236.Google Scholar
  15. Gloor, P., 1978, Evolution of the concept of the mechanism of generalized epilepsy with bilateral spike and wave discharge, in: Modern Perspectives in Epilepsy (A.J. Wada, ed.), Eden press, Montreal, pp. 99–137.Google Scholar
  16. Gloor, P., 1979, Generalized epilepsy with spike-and-wave discharge: A reinterpretation of its electrographic and clinical manifestations, Epilepsia 20: 571–588.CrossRefGoogle Scholar
  17. Gloor, P., 1984, Electrophysiology of generalized epilepsy, in: Electrophysiology of Epilepsy (P.A. Schwartzkroin, and H. Wheal, eds.), Academic Press, London, pp. 107–136.Google Scholar
  18. Gloor, P., 1988, Neurophysiological mechanism of generalized spike-and-wave discharge and its implication for understanding absence seizures, in: Elements of Petit Mal Epilepsy (M.S. Myslobodsky, and A.F. Mirsky, eds.), Peter Lang, New York, Bern, Frankfurt, Paris, pp. 159–209.Google Scholar
  19. Gloor, P., and Fariello, R.G., 1988, Generalized epilepsy: Some of its cellular mechanisms differ from those of focal epilepsy, Trends Neurosci. 11: 63–68.CrossRefGoogle Scholar
  20. Gloor, P., Quesney, L.F., and Zumstein, H., 1977, Pathophysiology of generalized penicillin epilepsy in the cat: The role of cortical and subcortical structures. II. Topical application of penicillin to the cerebral cortex and to subcortical structures, Electroencephalogr. Clin. Neurophysiol. 43: 79–94.CrossRefGoogle Scholar
  21. Gloor, P., Pellegrini, A., and Kostopoulos, G.K., 1979, Effects of changes in cortical excitability upon the epileptic bursts in generalized penicillin epilepsy of the cat, Electroencephalogr. Clin. Neurophysiol. 46: 274–289.CrossRefGoogle Scholar
  22. Gloor, P., Testa, G., 1974, Generalized epilepsy in the cat: Effects of intracarotid and intravertebral pentylenetetrazol and amobarbital injections, Electroencephalogr. Clin. Neurophysiol. 36: 499–515.CrossRefGoogle Scholar
  23. Guberman, A., and Gloor, P., 1974, Cholinergic drug studies of generalized penicillin epilepsy in the cat, Brain Res. 78: 203–222.CrossRefGoogle Scholar
  24. Guberman, A., and Gloor, P., and Sherwin, A.L., 1975, Response of generalized penicillin epilepsy in the cat to ethosuximide and diphenylhy-dantoin, Neurology 25: 758–764.Google Scholar
  25. Halasz, P., and Devenyi, E., 1974, Petit mal absences in night sleep with special reference to transitional sleep and REM periods, Acta Med. Acad. Sci. Hung. 31: 31–45.Google Scholar
  26. Herkenham, M., 1980, Laminar organization of thalamic projections to the rat neocortex, Science 207: 532–535.CrossRefGoogle Scholar
  27. Ingvar, D.H., 1955, Reproduction of the 3 per second spike and wave EEG pattern by subcortical electrical stimulation in cats, Acta Physiol. Scand 33: 137–150.CrossRefGoogle Scholar
  28. Jasper, H.H., and Droogleever-Fortuyn, J., 1946, Experimental studies on the functional anatomy of petit mal epilepsy, Res. Publ. Ass. Res. Nerv. Ment. Dis. 26: 272–298.Google Scholar
  29. Jasper, H., and Kershman, J., 1941, Electroence-phalographic classification of the epilepsies, Arch. Neurol. Psychiatr., 45: 903–943.Google Scholar
  30. Kaplan, B.J., Seyfried, T.N., and Glaser, G.H., 1979, Spontaneous polyspike discharges in an epileptic mutant mouse (tottering), Exp. Neurol. 66: 577–586.CrossRefGoogle Scholar
  31. Kaufman, E.F.S., and Rosenquist, A.C., 1985, Efferent projections of the thalamic intralaminar nuclei in the cat, Brain Res. 335: 257–279.CrossRefGoogle Scholar
  32. Kellaway, P., 1985, Sleep and epilepsy, Epilepsia 26(Suppl.1): S15–S30.CrossRefGoogle Scholar
  33. Kellaway, P., Frost, J.D., and Crawley, J.W., 1980, Time modulation of spike-and-wave activity in generalized epilepsy, Ann. Neurol. 8: 491–500.CrossRefGoogle Scholar
  34. Kostopoulos, G., Gloor, P., Pellegrini, A., and Gotman, J., 1981a, A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: Microphysiolo-gical features, Exp. Neurol. 73: 55–77.CrossRefGoogle Scholar
  35. Kostopoulos, G., Gloor, P., Pellegrini, A., and Siatitsas, I., 1981b, A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: EEG features, Exp. Neurol. 73: 43–54.CrossRefGoogle Scholar
  36. Kostopoulos, G., Veronikis, D.K., and Efthimiou, I., 1987, Caffeine blocks absence seizures in the tottering mutant mouse, Epilepsia 28: 415–420.CrossRefGoogle Scholar
  37. Llinás, R., and Jahnsen, H., 1982, Electro-physiology of mammalian thalamic neurones in vitro, Nature 297: 406–408.CrossRefGoogle Scholar
  38. Marcus, E.M., and Watson, C.W., 1966, Bilateral synchronous spike wave electrographic patterns in the cat, Arch. Neurol. 14: 601–610.CrossRefGoogle Scholar
  39. Marcus, E.M., and Watson, C.W., 1968, Symmetrical epileptogenic foci in monkey cerebral cortex: Mechanisms of interaction and regional variations in capacity for synchronous discharges, Arch. Neurol. 18: 99–116.CrossRefGoogle Scholar
  40. Marcus, E.M., Watson, C.W., and Simon, S.A., 1968, An experimental model of some varieties of petit mal epilepsy. Electrical-behavioral correlations of acute bilateral epileptogenic foci in cerebral cortex, Epilepsia 9: 233–248.CrossRefGoogle Scholar
  41. Marescaux, C., Vergnes, M., Micheletti, G., Depaulis, A., Reis, J., Rumbach, L., Warter, J.M., and Kurtz, D., 1984, Une forme génétique d’absence Petit Mal chez le rat Wistar, Rev. Neurol. (Paris) 140: 63–66.Google Scholar
  42. McLachlan, R.S., Avoli, M., and Gloor, P., 1984a, Transition from spindles to generalized spike and wave discharges in the cat: Simultaneous single-cell recordings in cortex and thalamus, Exp. Neurol. 85: 413–425.CrossRefGoogle Scholar
  43. McLachlan, R.S., Gloor, P., and Avoli, M., 1984b, Differential participation of some “specific” and “non-specific” thalamic nuclei in generalized spike and wave discharges of feline generalized penicillin epilepsy, Brain Res., 307: 277–287.CrossRefGoogle Scholar
  44. Noebels, J.L., and Sidman, R.L., 1979, Inherited epilepsy: Spike-wave and focal motor seizures in the mutant mouse tottering, Science 204: 1334–1336.CrossRefGoogle Scholar
  45. Pellegrini, A., Gloor, P., and Sherwin, A.L., 1978, Effect of valproate sodium on generalized penicillin epilepsy in the cat, Epilepsia 19: 351–360.CrossRefGoogle Scholar
  46. Pellegrini, A., Musgrave, J., and Gloor, P., 1979, Role of afferent input of subcortical origin in the genesis of bilaterally synchronous epileptic discharges of feline generalized penicillin epilepsy, Exp. Neurol. 64: 155–173.CrossRefGoogle Scholar
  47. Penfield, W., and Jasper, H.H., 1946, Highest level seizures, Res. Publ. Ass. Res. Nerv. Ment. Dis. 26: 252–271.Google Scholar
  48. Penfield, W., and Jasper, H., 1954, Epilepsy and the Functional Anatomy of the Human Brain, Little Brown, Boston, 896 p.Google Scholar
  49. Pollen, D.A., Perot, P., and Reid, K.M., 1963, Experimental bilateral wave and spike from thalamic stimulation in relation to level of arousal, Electrocephalogr. Clin. Neurophysiol. 15: 1017–1028.CrossRefGoogle Scholar
  50. Prince, D., and Farrell, D., 1969, “Centrencephalic” spike-wave discharges following parenteral penicillin injection in the cat, Neurology 19: 309–310 (Abstr.).Google Scholar
  51. Quesney, L.F., Gloor, P., Kratzenberg, E., and Zumstein, H., 1977, Pathophysiology of generalized penicillin epilepsy in the cat: The role of cortical and subcortical structures. I. Systemic application of penicillin, Electroencephalogr. Clin. Neurophysiol. 42: 640–655.CrossRefGoogle Scholar
  52. Roy, J.P., Clercq, M., Steriade, M., and Deschênes, M., 1984, Electrophysiology of neurons of lateral thalamic nuclei in cat: Mechanism of long-lasting hyperpolarization, J. Neurophysiol. 51: 1220–1235.Google Scholar
  53. Spencer, W.A., and Brookhart, J.M., 1961, A study of spontaneous spindle waves in sensorimotor cortex of cat, J. Neurophysiol. 24: 50–65.Google Scholar
  54. Steriade, M., and Deschênes, M., 1984, The thalamus as a neuronal oscillator, Brain Res. 8: 1–63.CrossRefGoogle Scholar
  55. Steriade, M., and Llinás, R.R., 1988, The functional status of the thalamus and the associated neuronal interplay, Physiol. Rev. 68: 649–742.Google Scholar
  56. Taylor-Courval, D., and Gloor, P., 1984, Behavioral alterations associated with generalized spike and wave discharges in the EEG of the cat, Exp. Neurol. 83: 167–186.CrossRefGoogle Scholar
  57. Vergnes, M., Marescaux, C., Micheletti, G., Reis, J., Depaulis, A., Rumbach, L., and Wärter, J.M., 1982, Spontaneous paroxysmal electroclinical patterns in rat: A model of generalized non-convulsive epilepsy, Neurosci. Lett. 33: 97–101.CrossRefGoogle Scholar
  58. Vergnes, M., Marescaux, C., Depaulis, A., Micheletti, G., and Warter, J.M., 1986, Ontogeny of spontaneous petit mal-like seizures in Wistar rats, Develop. Brain Res. 30: 85–87.CrossRefGoogle Scholar
  59. Vergnes, M., Marescaux, C., Depaulis, A., Micheletti, G., and Warter, J.M., 1987, Spontaneous spike and wave discharges in thalamus and cortex in a rat model of genetic petit mal-like seizures, Exp. Neurol. 96: 127–136.CrossRefGoogle Scholar
  60. Weir, B., 1964, Spikes—wave from stimulation of reticular core, Arch. Neurol. 11: 209–218.CrossRefGoogle Scholar
  61. Wiener, N., 1958, Non-linear Problems in Random Theory, Technology Press of MIT and Wiley, New York, 131 p.Google Scholar
  62. Wiener, N., 1961, Cybernetics, 2nd ed., MIT Press and Wiley, New York and London, 212 p.Google Scholar

Copyright information

© Birkhäuser Boston, Inc. 1990

Authors and Affiliations

  • P. Gloor
  • M. Avoli
  • G. Kostopoulos

There are no affiliations available

Personalised recommendations