Skip to main content

Spindling, Incremental Thalamocortical Responses, and Spike-Wave Epilepsy

  • Chapter
Generalized Epilepsy

Abstract

There is accumulating evidence that generalized seizures with absence or petit mal attacks, characterized by 3-Hz, high-voltage EEG complexes of the spike-wave (SW) type, are dependent upon a decreased level of vigilance in humans and animals. Four main lines of clinical and experimental data support this idea. (1) In humans, SW activity is not randomly distributed over the sleep-waking cycle but rather demonstrates a time-ordered relationship between an increased number of SW discharges and the spindle stage of slow-wave sleep, whereas an abrupt attenuation of SW activity occurs upon awakening (Kellaway, 1985). (2) In the feline generalized epilepsy model (Prince and Farrell, 1963), spindle oscillations, an electrographic landmark of sleep onset, develop into bilaterally synchronous SW complexes and concomitant behavioral unresponsiveness, as seen in human petit mal attacks (Kostopoulos et al., 1981; McLachlan et al., 1984; Gloor and Fariello, 1988). (3) Self-sustained SW cortical activity follows protracted, single shock thalamic stimulation or thalamocortical incremental responses within the frequency range of spindle oscillations, during periods of drowsiness in chronically implanted monkeys (Steriade, 1974), and in the encéphale isolé cat (Steriade and Yossif, 1984). (4) An increase in the level of vigilance is effective in blocking SWs, since it disrupts EEG spindle rhythms. Indeed, the SWs of epileptic patients may be arrested by alerting stimuli (Li et al., 1952), and stimulation of the midbrain reticular core obliterates the SW-like cortical potentials evoked by low-frequency stimuli to thalamic intralaminar nuclei (Pollen et al., 1963).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avoli, M., Gloor, P., Kostopoulos, G., and Gotman, J., 1983, An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons, J. Neurophysiol. 50: 819–837.

    Google Scholar 

  • Barnes, D.M., and Dichter, M.A., 1984, Effects of ethosuximide and tetramethylsuccinimide on cultured cortical neurons. Neurology (Minneapolis) 34: 620–625.

    Google Scholar 

  • Bindman, L.J., Meyer, T., and Prince, C.A., 1988, Comparison of the electrical properties of neocor-tical neurones in slices in vitro and in the anesthetized rat. Exp. Brain Res. 69: 489–496.

    Article  Google Scholar 

  • Buszaki, G., Bickford, R.G., Ponomareff, G., Thal, L.G., Mandel, R., and Gage, F.G., 1988, Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J. Neurosci. 8: 4007–4016.

    Google Scholar 

  • Chagnac-Amitai, Y., and Connors, B.W., 1989, A neuronal basis for synchronized excitation and inhibition in neocortex. J. Neurophysiol., in press.

    Google Scholar 

  • Clarke, P.B.S., Schwartz, R.D., Paul, S.M., Pert, S.B., and Pert, A., 1985, Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-a-bungaro-toxin. J. Neurosci. 5: 1307–1315.

    Google Scholar 

  • Connors, B.W., and Gutnick, M.J., 1984, Neocortex cellular properties and intrinsic circuitry, in: Brain Slices (R. Dingledine, ed.), Plenum, New York, pp. 313–338.

    Google Scholar 

  • Connors, B.W., Gutnick, M.J., and Prince, D.A., 1982, Electrophysiological properties of neocortical neurons in vitro. J. Neurophysiol. 48: 1302–1320.

    Google Scholar 

  • Coulter, D.A., Huguenard, J.R., and Prince, D.A., 1988, Anticonvulsants depress calcium spikes and calcium currents of mammalian thalamic neurons in vitro. Soc. Neurosci. Abstr. 14: 644.

    Google Scholar 

  • Creutzfeldt, O.D., Watanabe, S., and Lux, H.D., 1966, Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroencephalogr. Clin. Neurophysiol. 20: 1–18.

    Article  Google Scholar 

  • Crunelli, V., Haby, M., Jassik-Gerschenfeld, D., Leresche, N., and Pirchio, M., 1988, Cl-and K+-dependent inhibitory postsynaptic potentials evoked by interneurons of the rat lateral geniculate nucleus. J. Physiol. (Lond.) 399: 153–176.

    Google Scholar 

  • Deschênes, M., Paradis, M., Roy, J.P., and Steriade, M., 1984, Electrophysiology of neurons of lateral thalamic nuclei in cat: Resting properties and burst discharges. J. Neurophysiol. 51: 1196–1219.

    Google Scholar 

  • Deschênes, M., Madariaga-Domich, A., and Steriade, M., 1985, Dendrodendritic synapses in the cat reticularis thalami nucleus: A structural basis for thalamic spindle synchronization. Brain Res. 334: 165–168.

    Article  Google Scholar 

  • Domich, L., Oakson, G., and Steriade, M., 1986, Thalamic burst patterns in the naturally sleeping cat: A comparison between cortically projecting and reticularis neurones. J. Physiol. (Lond.) 379: 429–449.

    Google Scholar 

  • Ferster, D., and Lindström, S., 1983, An intracellular analysis of geniculocortical connectivity in area 17 of the cat. J. Physiol. (Lond.) 342: 181–215.

    Google Scholar 

  • Giaretta, D., Avoli, M., and Gloor, P., 1987, Intracellular recordings in pericruciate neurons during spike and wave discharges of feline generalized penicillin epilepsy. Brain Res. 405: 68–79.

    Article  Google Scholar 

  • Gloor, P., and Fariello, R.G., 1988, Generalized epilepsy: Some of its cellular mechanisms differ from those of focal epilepsy. TINS, 11: 63–68.

    Google Scholar 

  • Guberman, A., Gloor, P., and Sherwin, A.L., 1975, Response of generalized penicillin epilepsy in the cat to ethosuximide and diphenylhydantoin. Neurology (Minneapolis) 25: 758–764.

    Google Scholar 

  • Hirsch, J.C., and Burnod, Y., 1987, A synaptically evoked late hyperpolarization in the rat dorsolateral geniculate neurons in vitro. Neuroscience 23: 457–468

    Article  Google Scholar 

  • Hu, B., Steriade, M., and Deschênes, M., 1989a, The effects of brainstem peribrachial stimulation on perigeniculate neurons: The blockage of spindle waves. Neuroscience, 31: 1–12.

    Article  Google Scholar 

  • Hu, B., Steriade, M., and Deschênes, M., 1989b, The effects of brainstem peribrachial stimulation on neurons of the lateral geniculate nucleus. Neuroscience, 31: 13–24.

    Article  Google Scholar 

  • Jahnsen, H., and Llinás, R., 1984, Electrophysiological properties of guinea-pig thalamic neurones: An in vitro study. J. Physiol. (Lond.) 349: 205–226.

    Google Scholar 

  • Jasper, H.H., 1969, Mechanisms of propagation: Extracellular studies, in: Basic Mechanisms of the Epilepsies (H.H. Jasper et al., eds.), Little Brown, Boston, pp. 421–438.

    Google Scholar 

  • Jones, E.G., 1983, The thalamus, in: Chemical Neuroanatomy (P.C. Emson, ed.), Raven Press, New York, pp. 257–293.

    Google Scholar 

  • Klee, M.R., 1966, Different effects on the membrane potential of motor cortex units after thalamic and reticular stimulation, in: The Thalamus (D.P. Purpura and M.D. Yahr, eds.), Columbia University Press, New York, pp. 287–317.

    Google Scholar 

  • Kellaway, P., 1985, Sleep and epilepsy, Epilepsia 26(Suppl. 1): 15–30.

    Article  Google Scholar 

  • Kostopoulos, G., Gloor, P., Pellegrini, A., and Gotman, J., 1981, A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: Microphysiological features. Exp. Neurol. 73: 55–77.

    Article  Google Scholar 

  • Li, C.L., Jasper, H.H., and Henderson, L., 1952, The effect of arousal mechanisms on various forms of abnormality in the electroencephalogram. Electroencephalogr. Clin. Neurophysiol. 4: 513–526.

    Article  Google Scholar 

  • Llinás, R., and Yarom, Y., 1981, Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J. Physiol. (Lond.) 315: 549–567.

    Google Scholar 

  • Llinás, R., and Yarom, Y., 1986, Oscillatory properties of guinea pig olivary neurones and their pharmacological modulation: An in vitro study. J. Physiol. (Lond.) 376: 163–182.

    Google Scholar 

  • McCormick, D.A., and Prince, D.A., 1986, Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance. Nature (Lond.) 319: 402–405.

    Article  Google Scholar 

  • McCormick, D.A., and Prince, D.A., 1987a, Actions of acetylcholine in the guinea pig and cat medial and lateral geniculate nuclei, in vitro. J. Physiol. (Lond.) 392: 147–165.

    Google Scholar 

  • McCormick, D.A., and Prince, D.A., 1987b, Neurotransmitter modulation of thalamic neuronal firing pattern. J. Mind Behav. 8: 573–590.

    Google Scholar 

  • McCormick, D.A., Connors, B.W., Lighthall, J.W., and Prince, D.A., 1985, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54: 782–806.

    Google Scholar 

  • McLachlan, R.S., Avoli, M., and Gloor, P., 1984, Transition from spindles to generalized spike and wave discharges in the cat: Simultaneous single-cell recordings in cortex and thalamus. Exp. Neurol. 85: 413–425.

    Article  Google Scholar 

  • Morin, D., and Steriade, M., 1981, Development from primary to augmenting responses in the somatosensory system. Brain Res. 205: 49–66.

    Article  Google Scholar 

  • Nagy, J.I., Yamamoto, T., Shiosaka, S., Dewar, K.M., Whittaker, M.E., and Hertzberg, E.L., 1988, Immunohistochemical localization of gap junction protein in rat CNS: A preliminary account, in: Gap Junctions (E.L. Hertzberg and R.G. Johnson, eds.), Alan R. Liss, New York, pp. 375–389.

    Google Scholar 

  • Paré, D., Steriade, M., Deschênes, M., and Oakson, G., 1987, Physiological properties of anterior thalamic nuclei, a group devoid of inputs from the reticular thalamic nucleus. J. Neurophysiol. 57: 1669–1685.

    Google Scholar 

  • Paré, D., Smith, Y., Parent, A., and Steriade, M., 1988, Projections of upper brainstem reticular cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. Neuroscience 25: 69–86.

    Article  Google Scholar 

  • Pellegrini, A., Curro Dossi, R., Dal Pos, F., Er-mani, M., Zanotto, L., and Testa, G., 1989, Etho-suximide alters intrathalamic and thalamocortical synchronizing mechanisms: A possible explanation of its antiabsence effect. Brain Res., in press.

    Google Scholar 

  • Pollen, D.A., 1964, Intracellular studies of cortical neurons during thalamic induced wave and spike. Electroencephalogr. Clin. Neurophysiol. 17: 398–404.

    Article  Google Scholar 

  • Pollen, D.A., Perot, P., and Reid, K.H., 1963, Experimental bilateral wave and spike from thalamic stimulation in relation to level of arousal. Electroencephalogr. Clin. Neurophysiol. 15: 1017–1028.

    Article  Google Scholar 

  • Prince, D.A., and Farrell, D., 1963, “Centren-cephalic” spike-wave discharges following parenteral penicillin injection in the cat. Neurology (Minneapolis) 19: 309–310.

    Google Scholar 

  • Purpura, D.P., Shofer, R.J., and Musgrave, F.S., 1964, Cortical intracellular potentials during augmenting and recruiting responses. II. Patterns of synaptic activities in pyramidal and nonpyramidal tract neurons. J. Neurophysiol. 27: 133–151.

    Google Scholar 

  • Sato, S., White, B.G., Penry, J.K., Dreifuss, F.E., Sackellares, J.C., and Kupferberg, H.J., 1982, Valproic acid versus ethosuximide in the treatment of absence seizures. Neurology (Minneapolis) 32: 157–163.

    Google Scholar 

  • Smith, Y., Paré, D., Deschênes, M., Parent, A., and Steriade, M., 1988, Cholinergic and non-cholinergic projections from the upper brainstem core to the visual thalamus in the cat. Exp. Brain Res. 70: 166–180.

    Google Scholar 

  • Sotelo, C., Llinás, R., and Baker, R., 1974, Structural study of inferior olivary nucleus of the cat: Morphological correlates of electronic coupling. J. Neurophysiol. 37: 541–559.

    Google Scholar 

  • Spencer, W.A., and Brookhart, J.M., 1961a, Electrical patterns of augmenting and recruiting waves in the depths of the sensorimotor cortex of cat. J. Neurophysiol. 24: 26–49.

    Google Scholar 

  • Spencer, W.A., and Brookhart, J.M., 1961b, A study of spontaneous spindle waves in sensorimotor cortex of cat. J. Neurophysiol. 24: 50–65.

    Google Scholar 

  • Steriade, M., 1964, Development of evoked responses into self-sustained activity within amygdalo-hippocampal circuits. Electroencephalogr. Clin. Neurophysiol. 16: 221–236.

    Article  Google Scholar 

  • Steriade, M., 1974, Interneuronal epileptic discharges related to spike-and-wave cortical seizures in behaving monkeys. Electroencephalogr. Clin. Neurophysiol. 37: 247–263.

    Article  Google Scholar 

  • Steriade, M., 1984, The excitatory-inhibitory response sequence in thalamic and neocortical cells: State-related changes and regulatory systems, in: Dynamic Aspects of Neocortical function (G.M. Edelman, W.E. Gall, and W.M. Cowan, eds.), Wiley-Interscience, New York, pp. 107–157.

    Google Scholar 

  • Steriade, M., and Deschênes, M., 1974, Inhibitory processes and interneuronal apparatus in motor cortex during sleep and waking. II. Recurrent and afferent inhibition of pyramidal tract neurons. J. Neurophysiol. 37: 1093–1113.

    Google Scholar 

  • Steriade, M., and Deschênes, M., 1988, Intratha-lamic and brainstem-thalamic networks involved in resting and alert states, in: Cellular Thalamic Mechanisms (M. Bentivoglio and R. Spreafico, eds.), Elsevier, Amsterdam, pp. 37–62.

    Google Scholar 

  • Steriade, M., and Llinás, R.R., 1988, The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev. 68: 649–742.

    Google Scholar 

  • Steriade, M., and Morin, D., 1981, Reticular influences on primary and augmenting responses in the somatosensory cortex. Brain Res. 205: 67–80.

    Article  Google Scholar 

  • Steriade, M., and Yossif, G., 1974, Spike-and-wave afterdischarges in cortical somatosensory neurons of cat. Electroencephalogr. Clin. Neurophysiol. 37: 633–648.

    Article  Google Scholar 

  • Steriade, M., Deschênes, M., and Oakson, G., 1974, Inhibitory processes and interneuronal apparatus in motor cortex during sleep and waking. I. Background firing and responsiveness of pyramidal tract neurons and interneurons. J. Neurophysiol. 37: 1065–1092.

    Google Scholar 

  • Steriade, M., Oakson, G., and Diallo, A., 1976, Cortically elicited spike-wave discharges in thalamic neurons. Electroencephalogr. Clin. Neurophysiol. 41: 641–644.

    Article  Google Scholar 

  • Steriade, M., Oakson, G., and Diallo, A., 1977, Reticular influences on lateralis posterior thalamic neurons. Brain Res. 131: 55–71.

    Article  Google Scholar 

  • Steriade, M., Parent, A., and Hada, J., 1984, Thalamic projections of nucleus reticularis thalami of cat: A study using retrograde transport of horseradish peroxidase and double fluorescent tracers. J. Comp. Neurol. 229: 531–547.

    Article  Google Scholar 

  • Steriade, M., Deschênes, M., Domich, L., and Mulle, C., 1985, Abolition of spindle oscillations in thalamic neurons disconnected from the nucleus reticularis thalami. J. Neurophysiol. 54: 1473–1497.

    Google Scholar 

  • Steriade, M., Domich, L., and Oakson, G., 1986, Reticularis thalami neurons revisited: Activity changes during shifts in states of vigilance. J. Neurosci. 6: 68–81.

    Google Scholar 

  • Steriade, M., Domich, L., Oakson, G., and Deschênes, M., 1987a, The deafferented reticular thalamic nucleus generates spindle rhythmicity. J. Neurophysiol. 57: 260–273.

    Google Scholar 

  • Steriade, M., Parent, A., Paré, D., and Smith, Y., 1987b, Cholinergic and non-cholinergic neurons of cat basal forebrain project to reticular and me-diodorsal thalamic nuclei. Brain Res. 408: 372–376.

    Article  Google Scholar 

  • Steriade, M., Paré, D., Parent, A., and Smith, Y., 1988, Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey. Neuroscience 25: 47–67.

    Article  Google Scholar 

  • Swanson, L.W., Simmons, D.M., Whiting, P.J., and Lindstrom, J., 1987, Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system. J. Neurosci. 7: 3334–3342.

    Google Scholar 

  • Thompson, A.M., 1988, Inhibitory postsynaptic potentials evoked in thalamic neurones by stimulation of the reticularis nucleus evoke slow spikes in isolated rat brain slices. Neuroscience 25: 491–502.

    Article  Google Scholar 

  • White, E.L., and Hersch, S.M., 1982, A quantiative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex. J. Neurocy-tol. 11: 137–152.

    Article  Google Scholar 

  • White, E.L., and Rock, M.P., 1980, Three-dimensional aspects and synaptic relationships of a Golgi-impregnated spiny stellate cell reconstructed from serial thin sections. J. Neurocytol. 9: 615–636.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Steriade, M. (1990). Spindling, Incremental Thalamocortical Responses, and Spike-Wave Epilepsy. In: Avoli, M., Gloor, P., Kostopoulos, G., Naquet, R. (eds) Generalized Epilepsy. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6767-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6767-3_12

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6769-7

  • Online ISBN: 978-1-4684-6767-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics