Spindling, Incremental Thalamocortical Responses, and Spike-Wave Epilepsy

  • M. Steriade


There is accumulating evidence that generalized seizures with absence or petit mal attacks, characterized by 3-Hz, high-voltage EEG complexes of the spike-wave (SW) type, are dependent upon a decreased level of vigilance in humans and animals. Four main lines of clinical and experimental data support this idea. (1) In humans, SW activity is not randomly distributed over the sleep-waking cycle but rather demonstrates a time-ordered relationship between an increased number of SW discharges and the spindle stage of slow-wave sleep, whereas an abrupt attenuation of SW activity occurs upon awakening (Kellaway, 1985). (2) In the feline generalized epilepsy model (Prince and Farrell, 1963), spindle oscillations, an electrographic landmark of sleep onset, develop into bilaterally synchronous SW complexes and concomitant behavioral unresponsiveness, as seen in human petit mal attacks (Kostopoulos et al., 1981; McLachlan et al., 1984; Gloor and Fariello, 1988). (3) Self-sustained SW cortical activity follows protracted, single shock thalamic stimulation or thalamocortical incremental responses within the frequency range of spindle oscillations, during periods of drowsiness in chronically implanted monkeys (Steriade, 1974), and in the encéphale isolé cat (Steriade and Yossif, 1984). (4) An increase in the level of vigilance is effective in blocking SWs, since it disrupts EEG spindle rhythms. Indeed, the SWs of epileptic patients may be arrested by alerting stimuli (Li et al., 1952), and stimulation of the midbrain reticular core obliterates the SW-like cortical potentials evoked by low-frequency stimuli to thalamic intralaminar nuclei (Pollen et al., 1963).


Thalamic Nucleus Reticular Thalamic Nucleus Incremental Response Thalamic Stimulation Midbrain Reticular Forma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avoli, M., Gloor, P., Kostopoulos, G., and Gotman, J., 1983, An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons, J. Neurophysiol. 50: 819–837.Google Scholar
  2. Barnes, D.M., and Dichter, M.A., 1984, Effects of ethosuximide and tetramethylsuccinimide on cultured cortical neurons. Neurology (Minneapolis) 34: 620–625.Google Scholar
  3. Bindman, L.J., Meyer, T., and Prince, C.A., 1988, Comparison of the electrical properties of neocor-tical neurones in slices in vitro and in the anesthetized rat. Exp. Brain Res. 69: 489–496.CrossRefGoogle Scholar
  4. Buszaki, G., Bickford, R.G., Ponomareff, G., Thal, L.G., Mandel, R., and Gage, F.G., 1988, Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J. Neurosci. 8: 4007–4016.Google Scholar
  5. Chagnac-Amitai, Y., and Connors, B.W., 1989, A neuronal basis for synchronized excitation and inhibition in neocortex. J. Neurophysiol., in press.Google Scholar
  6. Clarke, P.B.S., Schwartz, R.D., Paul, S.M., Pert, S.B., and Pert, A., 1985, Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-a-bungaro-toxin. J. Neurosci. 5: 1307–1315.Google Scholar
  7. Connors, B.W., and Gutnick, M.J., 1984, Neocortex cellular properties and intrinsic circuitry, in: Brain Slices (R. Dingledine, ed.), Plenum, New York, pp. 313–338.Google Scholar
  8. Connors, B.W., Gutnick, M.J., and Prince, D.A., 1982, Electrophysiological properties of neocortical neurons in vitro. J. Neurophysiol. 48: 1302–1320.Google Scholar
  9. Coulter, D.A., Huguenard, J.R., and Prince, D.A., 1988, Anticonvulsants depress calcium spikes and calcium currents of mammalian thalamic neurons in vitro. Soc. Neurosci. Abstr. 14: 644.Google Scholar
  10. Creutzfeldt, O.D., Watanabe, S., and Lux, H.D., 1966, Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroencephalogr. Clin. Neurophysiol. 20: 1–18.CrossRefGoogle Scholar
  11. Crunelli, V., Haby, M., Jassik-Gerschenfeld, D., Leresche, N., and Pirchio, M., 1988, Cl-and K+-dependent inhibitory postsynaptic potentials evoked by interneurons of the rat lateral geniculate nucleus. J. Physiol. (Lond.) 399: 153–176.Google Scholar
  12. Deschênes, M., Paradis, M., Roy, J.P., and Steriade, M., 1984, Electrophysiology of neurons of lateral thalamic nuclei in cat: Resting properties and burst discharges. J. Neurophysiol. 51: 1196–1219.Google Scholar
  13. Deschênes, M., Madariaga-Domich, A., and Steriade, M., 1985, Dendrodendritic synapses in the cat reticularis thalami nucleus: A structural basis for thalamic spindle synchronization. Brain Res. 334: 165–168.CrossRefGoogle Scholar
  14. Domich, L., Oakson, G., and Steriade, M., 1986, Thalamic burst patterns in the naturally sleeping cat: A comparison between cortically projecting and reticularis neurones. J. Physiol. (Lond.) 379: 429–449.Google Scholar
  15. Ferster, D., and Lindström, S., 1983, An intracellular analysis of geniculocortical connectivity in area 17 of the cat. J. Physiol. (Lond.) 342: 181–215.Google Scholar
  16. Giaretta, D., Avoli, M., and Gloor, P., 1987, Intracellular recordings in pericruciate neurons during spike and wave discharges of feline generalized penicillin epilepsy. Brain Res. 405: 68–79.CrossRefGoogle Scholar
  17. Gloor, P., and Fariello, R.G., 1988, Generalized epilepsy: Some of its cellular mechanisms differ from those of focal epilepsy. TINS, 11: 63–68.Google Scholar
  18. Guberman, A., Gloor, P., and Sherwin, A.L., 1975, Response of generalized penicillin epilepsy in the cat to ethosuximide and diphenylhydantoin. Neurology (Minneapolis) 25: 758–764.Google Scholar
  19. Hirsch, J.C., and Burnod, Y., 1987, A synaptically evoked late hyperpolarization in the rat dorsolateral geniculate neurons in vitro. Neuroscience 23: 457–468CrossRefGoogle Scholar
  20. Hu, B., Steriade, M., and Deschênes, M., 1989a, The effects of brainstem peribrachial stimulation on perigeniculate neurons: The blockage of spindle waves. Neuroscience, 31: 1–12.CrossRefGoogle Scholar
  21. Hu, B., Steriade, M., and Deschênes, M., 1989b, The effects of brainstem peribrachial stimulation on neurons of the lateral geniculate nucleus. Neuroscience, 31: 13–24.CrossRefGoogle Scholar
  22. Jahnsen, H., and Llinás, R., 1984, Electrophysiological properties of guinea-pig thalamic neurones: An in vitro study. J. Physiol. (Lond.) 349: 205–226.Google Scholar
  23. Jasper, H.H., 1969, Mechanisms of propagation: Extracellular studies, in: Basic Mechanisms of the Epilepsies (H.H. Jasper et al., eds.), Little Brown, Boston, pp. 421–438.Google Scholar
  24. Jones, E.G., 1983, The thalamus, in: Chemical Neuroanatomy (P.C. Emson, ed.), Raven Press, New York, pp. 257–293.Google Scholar
  25. Klee, M.R., 1966, Different effects on the membrane potential of motor cortex units after thalamic and reticular stimulation, in: The Thalamus (D.P. Purpura and M.D. Yahr, eds.), Columbia University Press, New York, pp. 287–317.Google Scholar
  26. Kellaway, P., 1985, Sleep and epilepsy, Epilepsia 26(Suppl. 1): 15–30.CrossRefGoogle Scholar
  27. Kostopoulos, G., Gloor, P., Pellegrini, A., and Gotman, J., 1981, A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: Microphysiological features. Exp. Neurol. 73: 55–77.CrossRefGoogle Scholar
  28. Li, C.L., Jasper, H.H., and Henderson, L., 1952, The effect of arousal mechanisms on various forms of abnormality in the electroencephalogram. Electroencephalogr. Clin. Neurophysiol. 4: 513–526.CrossRefGoogle Scholar
  29. Llinás, R., and Yarom, Y., 1981, Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J. Physiol. (Lond.) 315: 549–567.Google Scholar
  30. Llinás, R., and Yarom, Y., 1986, Oscillatory properties of guinea pig olivary neurones and their pharmacological modulation: An in vitro study. J. Physiol. (Lond.) 376: 163–182.Google Scholar
  31. McCormick, D.A., and Prince, D.A., 1986, Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance. Nature (Lond.) 319: 402–405.CrossRefGoogle Scholar
  32. McCormick, D.A., and Prince, D.A., 1987a, Actions of acetylcholine in the guinea pig and cat medial and lateral geniculate nuclei, in vitro. J. Physiol. (Lond.) 392: 147–165.Google Scholar
  33. McCormick, D.A., and Prince, D.A., 1987b, Neurotransmitter modulation of thalamic neuronal firing pattern. J. Mind Behav. 8: 573–590.Google Scholar
  34. McCormick, D.A., Connors, B.W., Lighthall, J.W., and Prince, D.A., 1985, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54: 782–806.Google Scholar
  35. McLachlan, R.S., Avoli, M., and Gloor, P., 1984, Transition from spindles to generalized spike and wave discharges in the cat: Simultaneous single-cell recordings in cortex and thalamus. Exp. Neurol. 85: 413–425.CrossRefGoogle Scholar
  36. Morin, D., and Steriade, M., 1981, Development from primary to augmenting responses in the somatosensory system. Brain Res. 205: 49–66.CrossRefGoogle Scholar
  37. Nagy, J.I., Yamamoto, T., Shiosaka, S., Dewar, K.M., Whittaker, M.E., and Hertzberg, E.L., 1988, Immunohistochemical localization of gap junction protein in rat CNS: A preliminary account, in: Gap Junctions (E.L. Hertzberg and R.G. Johnson, eds.), Alan R. Liss, New York, pp. 375–389.Google Scholar
  38. Paré, D., Steriade, M., Deschênes, M., and Oakson, G., 1987, Physiological properties of anterior thalamic nuclei, a group devoid of inputs from the reticular thalamic nucleus. J. Neurophysiol. 57: 1669–1685.Google Scholar
  39. Paré, D., Smith, Y., Parent, A., and Steriade, M., 1988, Projections of upper brainstem reticular cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. Neuroscience 25: 69–86.CrossRefGoogle Scholar
  40. Pellegrini, A., Curro Dossi, R., Dal Pos, F., Er-mani, M., Zanotto, L., and Testa, G., 1989, Etho-suximide alters intrathalamic and thalamocortical synchronizing mechanisms: A possible explanation of its antiabsence effect. Brain Res., in press.Google Scholar
  41. Pollen, D.A., 1964, Intracellular studies of cortical neurons during thalamic induced wave and spike. Electroencephalogr. Clin. Neurophysiol. 17: 398–404.CrossRefGoogle Scholar
  42. Pollen, D.A., Perot, P., and Reid, K.H., 1963, Experimental bilateral wave and spike from thalamic stimulation in relation to level of arousal. Electroencephalogr. Clin. Neurophysiol. 15: 1017–1028.CrossRefGoogle Scholar
  43. Prince, D.A., and Farrell, D., 1963, “Centren-cephalic” spike-wave discharges following parenteral penicillin injection in the cat. Neurology (Minneapolis) 19: 309–310.Google Scholar
  44. Purpura, D.P., Shofer, R.J., and Musgrave, F.S., 1964, Cortical intracellular potentials during augmenting and recruiting responses. II. Patterns of synaptic activities in pyramidal and nonpyramidal tract neurons. J. Neurophysiol. 27: 133–151.Google Scholar
  45. Sato, S., White, B.G., Penry, J.K., Dreifuss, F.E., Sackellares, J.C., and Kupferberg, H.J., 1982, Valproic acid versus ethosuximide in the treatment of absence seizures. Neurology (Minneapolis) 32: 157–163.Google Scholar
  46. Smith, Y., Paré, D., Deschênes, M., Parent, A., and Steriade, M., 1988, Cholinergic and non-cholinergic projections from the upper brainstem core to the visual thalamus in the cat. Exp. Brain Res. 70: 166–180.Google Scholar
  47. Sotelo, C., Llinás, R., and Baker, R., 1974, Structural study of inferior olivary nucleus of the cat: Morphological correlates of electronic coupling. J. Neurophysiol. 37: 541–559.Google Scholar
  48. Spencer, W.A., and Brookhart, J.M., 1961a, Electrical patterns of augmenting and recruiting waves in the depths of the sensorimotor cortex of cat. J. Neurophysiol. 24: 26–49.Google Scholar
  49. Spencer, W.A., and Brookhart, J.M., 1961b, A study of spontaneous spindle waves in sensorimotor cortex of cat. J. Neurophysiol. 24: 50–65.Google Scholar
  50. Steriade, M., 1964, Development of evoked responses into self-sustained activity within amygdalo-hippocampal circuits. Electroencephalogr. Clin. Neurophysiol. 16: 221–236.CrossRefGoogle Scholar
  51. Steriade, M., 1974, Interneuronal epileptic discharges related to spike-and-wave cortical seizures in behaving monkeys. Electroencephalogr. Clin. Neurophysiol. 37: 247–263.CrossRefGoogle Scholar
  52. Steriade, M., 1984, The excitatory-inhibitory response sequence in thalamic and neocortical cells: State-related changes and regulatory systems, in: Dynamic Aspects of Neocortical function (G.M. Edelman, W.E. Gall, and W.M. Cowan, eds.), Wiley-Interscience, New York, pp. 107–157.Google Scholar
  53. Steriade, M., and Deschênes, M., 1974, Inhibitory processes and interneuronal apparatus in motor cortex during sleep and waking. II. Recurrent and afferent inhibition of pyramidal tract neurons. J. Neurophysiol. 37: 1093–1113.Google Scholar
  54. Steriade, M., and Deschênes, M., 1988, Intratha-lamic and brainstem-thalamic networks involved in resting and alert states, in: Cellular Thalamic Mechanisms (M. Bentivoglio and R. Spreafico, eds.), Elsevier, Amsterdam, pp. 37–62.Google Scholar
  55. Steriade, M., and Llinás, R.R., 1988, The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev. 68: 649–742.Google Scholar
  56. Steriade, M., and Morin, D., 1981, Reticular influences on primary and augmenting responses in the somatosensory cortex. Brain Res. 205: 67–80.CrossRefGoogle Scholar
  57. Steriade, M., and Yossif, G., 1974, Spike-and-wave afterdischarges in cortical somatosensory neurons of cat. Electroencephalogr. Clin. Neurophysiol. 37: 633–648.CrossRefGoogle Scholar
  58. Steriade, M., Deschênes, M., and Oakson, G., 1974, Inhibitory processes and interneuronal apparatus in motor cortex during sleep and waking. I. Background firing and responsiveness of pyramidal tract neurons and interneurons. J. Neurophysiol. 37: 1065–1092.Google Scholar
  59. Steriade, M., Oakson, G., and Diallo, A., 1976, Cortically elicited spike-wave discharges in thalamic neurons. Electroencephalogr. Clin. Neurophysiol. 41: 641–644.CrossRefGoogle Scholar
  60. Steriade, M., Oakson, G., and Diallo, A., 1977, Reticular influences on lateralis posterior thalamic neurons. Brain Res. 131: 55–71.CrossRefGoogle Scholar
  61. Steriade, M., Parent, A., and Hada, J., 1984, Thalamic projections of nucleus reticularis thalami of cat: A study using retrograde transport of horseradish peroxidase and double fluorescent tracers. J. Comp. Neurol. 229: 531–547.CrossRefGoogle Scholar
  62. Steriade, M., Deschênes, M., Domich, L., and Mulle, C., 1985, Abolition of spindle oscillations in thalamic neurons disconnected from the nucleus reticularis thalami. J. Neurophysiol. 54: 1473–1497.Google Scholar
  63. Steriade, M., Domich, L., and Oakson, G., 1986, Reticularis thalami neurons revisited: Activity changes during shifts in states of vigilance. J. Neurosci. 6: 68–81.Google Scholar
  64. Steriade, M., Domich, L., Oakson, G., and Deschênes, M., 1987a, The deafferented reticular thalamic nucleus generates spindle rhythmicity. J. Neurophysiol. 57: 260–273.Google Scholar
  65. Steriade, M., Parent, A., Paré, D., and Smith, Y., 1987b, Cholinergic and non-cholinergic neurons of cat basal forebrain project to reticular and me-diodorsal thalamic nuclei. Brain Res. 408: 372–376.CrossRefGoogle Scholar
  66. Steriade, M., Paré, D., Parent, A., and Smith, Y., 1988, Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey. Neuroscience 25: 47–67.CrossRefGoogle Scholar
  67. Swanson, L.W., Simmons, D.M., Whiting, P.J., and Lindstrom, J., 1987, Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system. J. Neurosci. 7: 3334–3342.Google Scholar
  68. Thompson, A.M., 1988, Inhibitory postsynaptic potentials evoked in thalamic neurones by stimulation of the reticularis nucleus evoke slow spikes in isolated rat brain slices. Neuroscience 25: 491–502.CrossRefGoogle Scholar
  69. White, E.L., and Hersch, S.M., 1982, A quantiative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex. J. Neurocy-tol. 11: 137–152.CrossRefGoogle Scholar
  70. White, E.L., and Rock, M.P., 1980, Three-dimensional aspects and synaptic relationships of a Golgi-impregnated spiny stellate cell reconstructed from serial thin sections. J. Neurocytol. 9: 615–636.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston, Inc. 1990

Authors and Affiliations

  • M. Steriade

There are no affiliations available

Personalised recommendations