In Vitro Electrophysiology of a Genetic Model of Generalized Epilepsy

  • G. Kostopoulos
  • C. Psarropoulou


Our understanding of the mechanisms of several diseases has been advanced in many cases through a reductionist experimental approach: from a complex system, where the entire phe-notype of the disease is expressed, to simpler parts of this system, which one can more easily investigate. The validity of a reductionist approach seems to depend on an inverse inductive way of using the more precise information gained at the lower level of organization, in order to interpret findings at the higher level. Optimally, therefore, the study at a higher system level must first advance enough so that specific questions addressable at a lower level will evolve and a framework for the use of the answers will be obtained.


Hippocampal Slice Rest Membrane Potential Maximal Slope Population Spike Generalize Epilepsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alger, B.E., and Teyler, T.J., 1978, Potassium and short-term response plasticity in the hippocampal slice, Brain Res. 159: 239–242.CrossRefGoogle Scholar
  2. Andersen, P., Bliss, T.V.P., and Skrede, K.K., 1971, Unit analysis of hippocampal population spikes. Exp. Brain Res. 13: 208–221.Google Scholar
  3. Andersen, P., Silfvenius, H., Sundberf, S.H., Sveen, O., 1980, A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea pig hippocampal slices in vitro, J. Physiol. (Lond.) 307: 273–299.Google Scholar
  4. Avoli, M., Gloor, P., Kostopoulos, G., and Gotman, J., 1983, An analysis of penicillin-induced spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons, J. Neurophysiol. 50: 819–837.Google Scholar
  5. Avoli, M., Louvel, J., Pumain, R., and Olivier, A., 1987, Seizure-like discharges induced by lowering [Mg++]o in the human epileptogenic neocortex maintained in vitro, Brain Res. 417: 199–203.CrossRefGoogle Scholar
  6. Avoli, M., Drapeau, C., and Kostopoulos, G., 1988, Changes in synaptic transmission in the “in vitro” hippocampal slice by a brief decrease in [Mg++]o. A correlate for long-term potentiation? in H.L. Haas and G. Buzsaki (Eds.): Synaptic Plasticity in the Hippocampus. Springer-Verlag, Berlin, pp. 9–12.CrossRefGoogle Scholar
  7. Barnes, C.A., and McNaughton, B.L., 1980, Physiological compensation for loss of afferent synapses in rat hippocampal granule cells during senescence, J. Physiol. (Lond.) 309: 473–485.Google Scholar
  8. Barnes, C.A., and McNaughton, B.L., 1987, Increased electrotonic coupling in aged rat hippocampus: A possible mechanism for cellular excitability changes. J. Comp. Neurol. 259: 547–558.CrossRefGoogle Scholar
  9. Berkovic, S.F., Andermann, F., Andermann, E., and Gloor, P., 1987, Concepts of absence epilepsies: Discrete syndromes or biological continuum? Neurology 37: 993–1000.Google Scholar
  10. Bliss, T.V.P., Lynch, M.A., 1988, Long-term potentiation of synaptic transmission in the hippocampus: Properties and mechanisms, in P.W. Landfield and P.W. Deadwyller (Eds.): Long-Term Potentiation: From Biophysics to Behavior. Alan R. Liss, Inc., New York, pp. 3–72.Google Scholar
  11. Cain, D.P., 1989, Long-term potentiation and kindling: How similar are the mechanisms? TINS 12,(1): 6–10.Google Scholar
  12. Coan, E.J., and Collingridge, G.L., 1987, Characterization of an N-methyl-D-aspartate receptor component of synaptic transmission in rat hippocampal slices, Neuroscience 22: 1–8.CrossRefGoogle Scholar
  13. Delgado-Escueta, A.V., Ward, A.A., Jr., Woodbury, D.M., and Porter, R.J., 1986, New wave of research in the epilepsies. In A.V. Delgado-Escueta, A.A. Ward, Jr., D.M. Woodbury, and R.J. Porter (Eds.): Advances in Neurology, Vol. 44. Raven Press, New York, pp. 3–55.Google Scholar
  14. de Toledo-Morrell, L., and Morrell, F., 1985, Electrophysiological markers of aging and memory loss in rats, Ann. NY Acad. Sci. 444: 296–311.CrossRefGoogle Scholar
  15. Dichter, M.A., and Ayala, G.F., 1987, Cellular mechanisms of epilepsy: A status report, Science 237: 157–163.CrossRefGoogle Scholar
  16. Dingledine, R., 1984, Brain Slices. Plenum Press, New York.Google Scholar
  17. Dingledine, R., Hynes, M.A., and King, G.L., 1986, Involvement of N-methyl-D-aspartate receptors in epileptiform bursting in the rat hip-pocampal slice, J. Physiol. (Lond.) 380: 175–189.Google Scholar
  18. Dreyfus, C.F., Gershon, M.D., and Crain, S.M., 1979, Innervation of hippocampal expiants by central catecholaminergic neurons in co-cultured fetal mouse brain stem expiants, Brain Res. 161: 431–445.CrossRefGoogle Scholar
  19. Dudek, F.E., Gribkoff, V.K., and Christian, E.P., 1988, Mechanisms of potentiation independent of chemical synapses. In P.W. Landfield and P.W. Deadwyler (Eds.): Long-Term Potentiation: From Biophysics to Behavior. Alan R. Liss, Inc., New York, pp. 439–464.Google Scholar
  20. Feldberg, W., and Sherwood, S.L., 1957, Effects of CA++ and K+ injected into the cerebral ventricles of the cat, J. Physiol. (Lond.) 139: 408–416.Google Scholar
  21. Fisher, R.S., Pedley, T.A., Moody, W.J., and Prince, D.A., 1976, The role of extracellular potassium in hippocampal epilepsy. Arch. Neurol. 33: 74–93.CrossRefGoogle Scholar
  22. Frankenhaeuser, B., and Hodgkin, A.L., 1956, The aftereffects of impulses in the giant nerve fibres of Loligo. 7. Physiol. (Lond.) 131: 341–376.Google Scholar
  23. Ganetsky, B., and Wu, C.-F., 1985, Genes and membrane excitability in Drosophila, Trends Neurosci. 8: 322–326.CrossRefGoogle Scholar
  24. Gastaut, H., Jasper, H., Bancaud, J., and Waltregny, A., 1969, The Physlopathogenesis of the Epilepsies. C Thomas, Illinois.Google Scholar
  25. Giaretta, D., Avoli, M., and Gloor, P., 1987, Intracellular recordings in pericruciate neurons during spike and wave discharges of feline generalized penicillin epilepsy, Brain Res. 405: 68–79.CrossRefGoogle Scholar
  26. Gloor, P., 1979, Generalized epilepsy with spike-and-wave discharge: A reinterpretation of its electrographic and clinical manifestations, Epilepsia 20: 571–588.CrossRefGoogle Scholar
  27. Gloor, P., 1984, Electrophysiology of generalized epilepsy. In P.A. Schwartzkroin and H. Wheal (Eds.): Electrophysiology of Epilepsy. Academic Press, New York, pp. 107–136.Google Scholar
  28. Gloor, P., and Fariello, R.G., 1988, Generalized epilepsy: Some of its cellular mechanisms differ from those of focal epilepsy, Trends Neurosci. 11(2): 63–68.CrossRefGoogle Scholar
  29. Gloor, P., Metrakos, J., Metrakos, K., Andermann, E., and van Gelder, N., 1982, Neurophysio-logical, genetic and biochemical nature of the epileptic diathesis, EEG Clin. Neurophysiol. (Suppl. 35): 45–56.Google Scholar
  30. Haas, H.L., and Konnerth, A., 1983, Histamine and noradrenaline decrease calcium activated potassium conductance in hippocampal pyramidal cells, Nature 302: 332–334.CrossRefGoogle Scholar
  31. Haas, H.L., Scharer, B., and Vosmansky, M., 1979, A simple perfusion chamber for the study of nervous tissue slices in vitro, J. Neurosci. Meth. 1: 323–325.CrossRefGoogle Scholar
  32. Heinemann, U., Lux, H.D., and Gutnick, M.J., 1977, Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat, Exp. Brain Res. 27: 237–243.CrossRefGoogle Scholar
  33. Heinemann, U., Konnerth, A., Pumain, R., and Wadman, W.J., 1986, Extracellular calcium and potassium concentration changes in chronic brain tissue, In A.V. Delgado-Escueta, et al. (Eds.): Advances in Neurology, Vol. 44. Raven Press, New York, pp. 619–639.Google Scholar
  34. Heller, A.H., Dichter, M.A., Sidman, R.L., 1983, Anticonvulsant sensitivity of absence seizures in the tottering mutant mouse, Epilepsia 25: 25–34.CrossRefGoogle Scholar
  35. Hopkins, W.F., and Johnston, D., 1988, Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus, J. Neurophysiol. 59(2): 667–687.Google Scholar
  36. Huang, Y.-Y., Wingstrom, H., and Gustafsson, B., 1987, Facilitated induction of hippocampal long-term potentiation in slices perfused with low concentrations of magnesium, Neuroscience 22: 9–16.CrossRefGoogle Scholar
  37. Jasper, H.H., and van Gelder, N., 1982, Basic Mechanisms of Neuronal Hyper excitability. Alan R. Liss, New York, 495 pp.Google Scholar
  38. Kandel, E.R., and Spencer, W.A., 1961, Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing, J. Neurophysiol. 24: 234–259.Google Scholar
  39. Kennedy, M.B., 1988, Synaptic memory molecules, Nature (Lond.) 335: 770–772.CrossRefGoogle Scholar
  40. King, G.L., Dingledine, R., Giachinno, J.L., and McNamara, J.O., 1985, Abnormal neuronal excitability in hippocampal slices from kindled rats, J. Neurophysiol. 54(5): 1295–1304.Google Scholar
  41. Kostopoulos, G., 1986, Neuronal sensitivity to GABA and glutamate in generalized epilepsy with spike and wave discharges, Exp. Neurol. 92: 20–36.CrossRefGoogle Scholar
  42. Kostopoulos, G., and Gloor, P., 1982, A mechanism for spike-wave discharge in feline penicillin epilepsy and its relationship to spindle generation. In M.B. Sterman, M.N. Shouse, and P. Passouant (Eds.): Sleep and Epilepsy. Academic Press, New York, pp. 11–22.Google Scholar
  43. Kostopoulos, G., Gloor, P., Pellegrini, A., and Gotman, J., 1981, A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: Microphysiological features, Exp. Neurol. 73: 55–77.CrossRefGoogle Scholar
  44. Kostopoulos, G., Avoli, M., and Gloor, P., 1983, Participation of cortical recurrent inhibition in the genesis of spike and wave discharges in feline generalized penicillin epilepsy, Brain Res. 221: 101–112.CrossRefGoogle Scholar
  45. Kostopoulos, G., Veronikis, D.K., and Efthimiou, I., 1987, Caffeine blocks absence seizures in the tottering mutant mouse, Epilepsia 28(4): 415–420.CrossRefGoogle Scholar
  46. Kostopoulos, G., Psarropoulou, K., and Haas, H., 1988, Membrane properties, response to amines and to tetanic stimulation of hippocampal neurons in the genetically epileptic mutant mouse tottering, Exp. Brain Res. 72: 45–50.CrossRefGoogle Scholar
  47. Krnjevic, K., 1983, GABA-mediated inhibitory mechanisms in relation to epileptic discharges. In H.H. Jasper and N.M. Van Gelder (Eds.): Basic Mechanisms of Neuronal Hyperexcitability. Alan R. Liss, Inc., New York, pp. 249–280.Google Scholar
  48. Levitt, P., and Noebels, J.L., 1981, Mutant mouse tottering: Selective increase of locus coeruleus axons in a defined single-locus mutation, Proc. Natl. Acad. Sci. USA 78: 4630–4634.CrossRefGoogle Scholar
  49. Levitt, P., Law, C., Pylypiw, A., and Ross, L.L., 1984, Central adrenergic receptors in the inherited noradrenergic hyperinnervated mutant mouse tottering, Neurosc. Abstr. 10: 179.Google Scholar
  50. Lux, H.D., Heinemann, U., and Dietzel, I., 1986, Ionic changes and alteration in the size of the extracellular space during epileptic activity. In A.V. Delgado-Escueta, et al. (Eds.): Advances in Neurology, Vol. 44, Raven Press, New York, pp. 619–639.Google Scholar
  51. Magistretti, P.J., Hof, P.R., and Celio, M.R., 1987, Noradrenergic sub sensitivity in the cerebral cortex of the tottering mouse, a spontaneously epileptic mutant, Brain Res. 403: 181–185.CrossRefGoogle Scholar
  52. Madison, D.C., and Nicoll, R.A., 1982, Noradrenaline blocks accommodations of pyramidal cell discharge in the hippocampus, Nature 299: 636–638.CrossRefGoogle Scholar
  53. Mason, S.T., and Corcoran, M.E., 1979, Catecholamines and convulsions, Brain Res. 170: 497–507.CrossRefGoogle Scholar
  54. Mc Intyre, D.C., and Wong, R.K.S., 1986, Cellular and synaptic properties of amygdala-kindled pyriform cortex in vitro, J. Neurophysiol. 55: 1295–1307.Google Scholar
  55. McNamara, J.O., Byrne, M.C., Dasheiff, R.M., and Fitz, J.G., 1980, The kindling model of epilepsy: A review, Progr. Neurobiol. 15: 139–159.CrossRefGoogle Scholar
  56. Meldrum, B.S., Croucher, M.J., Badman, C., and Collins, J.S., 1983, Antiepileptic action of excitatory amino acid antagonists in the photosensitive baboon, Papio papio, Neurosci. Lett. 39: 101–104.CrossRefGoogle Scholar
  57. Meencke, H.-J., and Janz, D., 1984, Neuropatho-logical findings in primary generalized epilepsy: A study of eight cases, Epilepsia 25(1): 8–21.CrossRefGoogle Scholar
  58. Metrakos, K., and Metrakos, J., 1961, Genetics of convulsive disorders. II. Genetic and electroen-cephalographic studies in the centrencephalic epilepsy, Neurology 11: 474–483.Google Scholar
  59. Mody, I., Stanton, P.K., and Heinemann, U., 1988, Activation of N-methyl-D-aspartate receptors parallels changes in cellular and synaptic properties of dentate gyrus granule cells after kindling, J. Neurophysiol. 59: 1033–1054.Google Scholar
  60. Neuman, R., Cherubini, E., and Ben-Ari, Y., 1987, Is activation of N-methyl-D-aspartate receptor gated channels sufficient to induce long term potentiation? Neurosci. Lett. 80: 283–288.CrossRefGoogle Scholar
  61. Noebels, J.L., 1984, A single gene error of noradrenergic axon growth synchronizes central neurons. Nature, 310: 409–411.CrossRefGoogle Scholar
  62. Noebels, J.L., and Sidman, R.L., 1979, Inherited epilepsy: Spike-wave and focal motor seizures in the mutant mouse tottering, Science 204: 1334–1336.CrossRefGoogle Scholar
  63. Ogata, N., Hori, N., and Katsuda, N., 1976, The correlation between extracellular potassium concentration and hippocampal epileptic activity in vitro, Brain Res. 110: 371–375.CrossRefGoogle Scholar
  64. Oliver, M.W., and Miller, J.J., 1985, Inhibitory processes of hippocampal CA1 pyramidal neurons following kindling induced epilepsy in the rat, Can. J. Physiol. Pharmacol. 63: 872–878.CrossRefGoogle Scholar
  65. Peterson, D.W., Collins, J.F., and Bradford, H.F., 1983, The kindled amygdala model of epilepsy: Anticonvulsant action of amino acid antagonists, Brain Res. 275: 169–172.CrossRefGoogle Scholar
  66. Poolos, N.P., Mauk, M.D., and Kocsis, J.D., 1987, Activity-evoked increases in extracellular potassium modulate presynaptic excitability in the CA1 region of the hippocampus, J. Neurophysiol. 58: 404–416.Google Scholar
  67. Prince, D.A., and Schwartzkroin, P.A., 1978, Non-synaptic mechanisms in epileptogenesis. In N. Chalazonitis and M. Boisson (Eds.): Abnormal Neuronal Discharges. Raven Press, New York, pp. 1–12.Google Scholar
  68. Psarropoulou, C., Angelatou, F., Matsokis, N., Veronikis, D.K., and Kostopoulos, G., 1987, Absence of modification in GABA and benzodiazepine binding and in choline acetyltransfer-ase activity in brain areas of the epileptic mutant mouse tottering, Gen. Pharmacol. 18(6): 593–597.CrossRefGoogle Scholar
  69. Rail, W.R., 1955, A statistical theory of monosynaptic input-output relations, J. Cell Comp. Physiol. 46: 372–411.Google Scholar
  70. Rutecki, P.A., and Noebels, J.L., 1987, Increased extracellular potassium unmasks excitability differences between epileptic mutant tottering and control mouse hippocampus in vitro, Soc. Neuro-sci. Abstr. 13: 942.Google Scholar
  71. Rutecki, P.A., Lebeda, F.J., and Johnston, D., 1985, Epileptiform activity induced by changes in extracellular potassium in hippocampus, J. Neu-rophysiol. 54: 1363–1374.Google Scholar
  72. Schwartzkroin, P.A., 1983, Local circuit considerations and intrinsic neuronal properties involved in hyperexcitability and cell synchronization. In H.H. Jasper and N.M. Van Gelder (Eds.): Basic Mechanisms of Neuronal Hyperexcitability. Alan R. Liss, Inc., New York, pp. 75–108.Google Scholar
  73. Somjen, G.G., 1979, Extracellular potassium in the central nervous system, Ann. Rev. Physiol. 41: 159–177.CrossRefGoogle Scholar
  74. Stanton, P.K., and Sarvey, J.M., 1985, Depletion of norepinephrine, but not serotonin reduces long-term potentiation in the dentate gyrus of rat hip-pocampal slices, J. Neurosci. 5: 2159–2176.Google Scholar
  75. Tancredi, V., and Avoli, M., 1987, Control of spontaneous epileptiform discharges by extracellular potassium, An “in vitro” study in the CA1 sub-field of the hippocampal slice, Exp. Brain Res. 67: 363–372.CrossRefGoogle Scholar
  76. Taube, J.S., and Schwartzkroin, P.A., 1988, Mechanisms of long-term potentiation: A current-source density analysis, J. Neurosci. 8(5): 1645–1655.Google Scholar
  77. Traynelis, S.F., and Dingledine, R., 1988, Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice, J. Neurophy-siol. 59(1): 259–276.Google Scholar
  78. van Gelder, N.M., Siatitsas, I., Menini, C., and Gloor, P., 1983, Feline generalized penicillin epilepsy: Changes in glutamic acid and taurine parallel the progressive increase in excitability of the cortex, Epilepsia 24: 200–213.CrossRefGoogle Scholar
  79. Yaari, Y., Konnerth, A., and Heinemann, U., 1986, Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium, J. Neurophysiol. 56: 424–438.Google Scholar
  80. Yamamoto, C., 1972, Intracellular study of seizure Nature like afterdischarges elicited in thin hippocampal sections in vitro, Exp. Neurol. 35: 154–164.CrossRefGoogle Scholar
  81. Zuckermann, E.C., and Glaser, G.H., 1968, Hippocampal epileptic activity induced by localized ventricular perfusion with high potassium cerebrospinal fluid, Exp. Neurol. 20: 87–110.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston, Inc. 1990

Authors and Affiliations

  • G. Kostopoulos
  • C. Psarropoulou

There are no affiliations available

Personalised recommendations