Skip to main content

The Use of an Animal Model to Study Post-Stroke Depression

  • Chapter
Book cover Animal Models of Depression

Abstract

The development of an animal model of a medical disorder found in humans provides many research advantages over a purely clinical investigation. The specificity of anatomical, biochemical, or physiological changes can be assessed while controlling for numerous other variables which may or may not be associated with the medical condition. There are numerous examples in literature of the value of investigating animal models. Thus it is not surprising that clinically oriented investigators are always in search of animal models of important human disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Psychiatric Association (1980). Diagnosis and Statistical Manuals of Mental Disorders, (3rd.). Washington D.C.: American Psychiatric Press

    Google Scholar 

  • Bleuler EP (1951): Textbook of Psychiatry. New York: Dover Publications

    Google Scholar 

  • Brown RM, Carlson A, Ljunggren B, Siesjo, Snider SR (1974): Effect of ischemia on monamine metabolism in the brain. Acta Physiol Scand 90:789–791

    Article  PubMed  CAS  Google Scholar 

  • Denenberg VH (1981): Hemispheric laterality in animals and the effects of early experience. Behav Brain Res 4:1–49

    Article  Google Scholar 

  • Denny-Brown D, Meyer JS (1957): The cerebral collateral circulation. Production of cerebral infarction by ischemic anoxia and its reversibility in early stages. Neurol 7:567–579

    CAS  Google Scholar 

  • Dewberry RG, Lipsey JR, Saad K, Moran TH, Robinson RG (1986): Lateralized response to cortical injury in the rat: Interhemispheric interaction. Behav Neurosci 100:556–562

    Article  PubMed  CAS  Google Scholar 

  • Feibel JH, Springer CJ (1982): Depression and failure to resume social activities after stroke. Arch Phys Med Rehabil 63:276

    PubMed  CAS  Google Scholar 

  • Finkelstein S, Benowitz LI, Baldessarini RJ, Arana GW, Levine D, Woo E, Bear D, Moya K, Stoll AL (1982): Mood, vegetative disturbance, and dexamethasone suppression test after stroke. Ann Neurol 12:463–468

    Article  Google Scholar 

  • Fisher SH (1961): Psychiatric considerations of cerebral vascular disease. Am J Cardiol 7:379–385.

    Article  PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975): Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  • Folstein MF, Maiberger R, McHugh PR (1977): Mood disorders as a specific complication of stroke. Neurol Neurosurg Psychiatr 40:1018–1020

    Article  CAS  Google Scholar 

  • Harlow HE, Suomi RS (1974): Induced depression in monkeys. Behav Biol 12:273

    Article  PubMed  CAS  Google Scholar 

  • Hecaen H (1962): Clinical symptomatology in right and left hemisphere lesions. In: Interhemispheric Relations and Cerebral Dominance. Mountcastle VB, ed. Baltimore: Johns Hopkins Press.

    Google Scholar 

  • Katz RJ (1981): Animal models and human depressive disorders. Neurosci Biobehav Rev 5:231–246.

    Article  PubMed  CAS  Google Scholar 

  • Kay DK (1962): Outcome and cause of death in mental disorders of old age: a long term follow-up of functional and organic psychoses. Acta Psychiatr Scand 38:249–267.

    Article  Google Scholar 

  • Kogure K, Scheinberg P, Matsumoto A, Busto R, Reinmuth OM (1975): Catecholamines in experimental brain ischemia. Arch Neurol 32:21–24.

    Article  PubMed  CAS  Google Scholar 

  • Kraeplin E. (1921): Manic depressive insanity and paranoia. Edinburgh: E & S Livingston

    Google Scholar 

  • Kubos KL, Brady JV, Moran TH, Smith CH, Robinson RG (1985): Asymmetrical effect of unilateral cortical lesions and amphetamine on DRL-20: a time loss analysis. Pharmacol Biochem Behav 22:1001–1006.

    Article  PubMed  CAS  Google Scholar 

  • Kubos KL, Moran TH, Robinson RG (1987): Differential and asymmetrical behavioral effects of electrolytic or 6-OHDA lesions in the nucleus accumbens. Brain Res 401:147–151

    Article  PubMed  CAS  Google Scholar 

  • Kubos KL, Moran TH, Saad KM, Robinson RG (1984): Asymmetrical locomotor responses to unilateral cortical injectons of DSP-4. Pharmacol Biochem Behav 21:163–167.

    Article  PubMed  CAS  Google Scholar 

  • Kubos KL, Pearlson GD, Robinson RG (1982): Intracortical kainic acid induces an asymmetrical behavioral response in the rat. Brain Res 239:303–309

    Article  PubMed  CAS  Google Scholar 

  • Kubos KL, Robinson RG (1984): Cortical undercuts in the rat produce asymmetrical behavioral response without altering catecholamine concentrations. Exp Neurol 83:646–653.

    Article  PubMed  CAS  Google Scholar 

  • Kunitz SC, Gross CR, Heyman A, Kase CS, Mohr JP, Price TR, Wolf PA (1984): The pilot stroke data bank: definition, design and data. Stroke 15:740–746.

    Article  PubMed  CAS  Google Scholar 

  • Levine S, Payan H (1966): Effect of ischemia and other procedures on the brain and retina of the gerbil. Exp Neurol 32:450–456.

    Google Scholar 

  • Levy DE, Brierley JB, Silverman DG, Plum F (1975): Brief hypoxia ischemia initially damages cerebral neurons. Arch Neurol 32:450–456.

    Article  PubMed  CAS  Google Scholar 

  • Lipsey JR, Robinson RG, Pearlson GD, Rao K, Price TR (1983): Mood changes following bilateral hemisphere brain injury. Br J Psychiatry 143:266–273.

    Article  PubMed  CAS  Google Scholar 

  • Lipsey JR, Robinson RG, Pearlson GD, Rao K, Price TR (1984): Nortriptyline treatment of post-stroke depression: A double-blind study. Lancet i:297–300.

    Google Scholar 

  • Lipsey JR, Robinson RG, Pearlson GD, Raok, Price TR (1985): Dexamethasone suppression test and mood following stroke. Am J Psychiatry 142:318–323

    PubMed  CAS  Google Scholar 

  • McKinney WT Jr (1974): Primate social isolation. Arch Gen Psychiatry 31:422–426.

    Article  PubMed  Google Scholar 

  • Meyer JS, Stoica E, Pascu I, Shimazu K, Hartmann A (1973): Catecholamine concentrations in CSF and plasma of patients with cerebral infarction and hemorrhage. Brain 96:277–288

    Article  PubMed  CAS  Google Scholar 

  • Mogensen GJ, Swanson LW, Wu M (1985): Evidence that projections form substantia innominata to zone incerta and mesencephelic locomotor region contribute to locomotor activity. Brain Res 334:65–76.

    Article  Google Scholar 

  • Moran TH, Zern KA, Pearlson GD, Kubos KL, Robinson RG (1986): Cold water stress abolishes hyperactivity produced by cortical suction lesions without altering noradrenergic depletions. Behav Neurosci 100:422–426

    Article  PubMed  CAS  Google Scholar 

  • Morrison JH, Grzanna R, Molliver ME, Coyle JT (1978): The distribution and orientation of noradrenergic fibers in neocortex of the rat: an immunofluorescence study. J Comp Neurol 181:171–40

    Article  Google Scholar 

  • O’Brien MD, Waltz AG (1973): Transorbital approach for occluding the middle cerebral artery without craniectomy. Stroke 4:201–206

    Article  PubMed  Google Scholar 

  • Parikh RJ, Robinson RG (1987): Mood and cognitive disorders following stroke. In: Experimental Models of Dementing Disorders: A Synaptic Neurochemical Perspective, Coyle JT, ed. New York: Alan R. Liss, Inc.

    Google Scholar 

  • Pearlson GD, Kubos KL, Robinson RG (1984): Effect of anterior-posterior lesion location on the asymmetrical behavioral and biochemical response to cortical suction ablations in the rat. Brain Res 293:241–250.

    Article  PubMed  CAS  Google Scholar 

  • Pearlson GD, Robinson RG (1981): Suction lesions of the frontal cerebral cortex in the rat induce asymmetrical behavioral and catecholaminergic responses. Brain Res 218:233–242

    Article  PubMed  CAS  Google Scholar 

  • Peterson JN, Evans JP (1937): The anatomical end results of cerebral artery occlusion. Trans Am Neurol Assoc 63:88–93.

    Google Scholar 

  • Porsolt RG, Anton G, Blavet N, Jalfre M (1978): Behavioral despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:319–391.

    Article  Google Scholar 

  • Post F (1962): The Significance of Affective Symptoms in Old Age (Maudsley Monograph, no. 10). London: Oxford University Press

    Google Scholar 

  • Reding MJ, Orto LA, Winter SW, Fortuna IM, Di Ponte PD, McDowell FH (1986): Antidepressant therapy after stroke: a double blind trial. Arch Neurol 43:763–765

    Article  PubMed  CAS  Google Scholar 

  • Reis DJ, Ross RA (1973): Dynamic changes in brain dopamine B-hydroxylase activity during anterograde and retrograde reactions to injury of central noradrenergic axons. Brain Res 57:307–326

    Article  PubMed  CAS  Google Scholar 

  • Robinson RG, Shoemaker WJ, Schlumpf M, Valk T, Bloom FE (1975): Effect of experimental cerebral infarction in rat brain on catecholamines and behavior. Nature (London) 295:332–333

    Article  Google Scholar 

  • Robinson RG, Bloom FE (1977): Pharmacological treatment following experimental cerebral infarction: implication for understanding psychological symptoms of human stroke. Biol Psychiatry 12:669–680

    PubMed  CAS  Google Scholar 

  • Robinson RG, Bloom FE (1978): Changes in posterior hypothalamic self-stimulation following experimental cerebral infarction in the rat. J Comp Physiol Psychol 92:969–976

    Article  PubMed  CAS  Google Scholar 

  • Robinson RG (1979): Differential behavioral and biochemical effect of right and left hemispheric cerebral infarction in the rat. Science 205:707–710.

    Article  PubMed  CAS  Google Scholar 

  • Robinson RG, Coyle JT (1980): The differential effect of right versus left hemispheric cerebral infarction on catecholamines and behavior in the rat. Brain Res 188:63–78

    Article  PubMed  CAS  Google Scholar 

  • Robinson RG, Shoemaker WH, Schlumpf M (1980): Time course of changes in catecholamines following right hemispheric cerebral infarction in the rat. Brain Res 181:202–208

    Article  PubMed  CAS  Google Scholar 

  • Robinson RG, Stitt TG (1981): Intracortical 6-hydroxydopamine induces an asymmetrical behavioral response in the rat. Brain Res 213:387–395

    Article  PubMed  CAS  Google Scholar 

  • Robinson RG, Szetela B (1981): Mood change following left hemispheric brain injury. Ann Neurol 9:447–453

    Article  PubMed  CAS  Google Scholar 

  • Robinson RG, Price TR (1982): Post-stroke depressive disorders: a follow-up study of 103 outpatients. Stroke 13:635–641

    Article  PubMed  CAS  Google Scholar 

  • Robinson RG, Starr LB, Kubos KL, Rao K, Price TR (1983): A two year longitudinal study of post-stroke mood disorders: findings during the initial evaluation. Stroke 14:736–741

    Article  PubMed  CAS  Google Scholar 

  • Robinson RG, Kubos KL, Starr LB, Rao K, Price TR (1984a): Mood disorders in stroke patients: importance of location of lesion. Brain 707:81–93

    Article  Google Scholar 

  • Robinson RG, Starr LB, Price TR (1984b). A two year longitudinal study of post stroke mood disorders; prevalence and duration at six months follow-up. Br J Psychiatry 144:256–262

    Article  PubMed  CAS  Google Scholar 

  • Robinson RG, Starr LB, Lipsey JR, Rao K, Price TR (1985): A two-year longitudinal study of post-stroke mood disorders: inhospital prognostic factors associated with six months outcome. J Nerv Men Dis 173:221–226

    Article  CAS  Google Scholar 

  • Robinson RG, Chait RM (1985): Emotional correlates of structural brain injury with particular emphasis on post-stroke mood disorder. Crit Rev Clin Neurobiol 1:285–318

    CAS  Google Scholar 

  • Robinson RG, Bolla-Wilson K, Kaplan E, Lipsey JR, Price TR (1986a): Evidence for intellectual impairment related to depression in stroke patients. Br J Psychiatry 148:541–547

    Article  PubMed  CAS  Google Scholar 

  • Robinson RG, Justice A (1986b): Mechanisms of lateralized hyperactivity following focal brain injury in the rat. Pharmacol Biochem Behav 25:1344–1354

    Article  Google Scholar 

  • Robinson RG, Bolduc PL, Price TR (1987): A two-year longitudinal study of post-stroke mood disorders: diagnosis and outcome at one and two year follow-up. Stroke 18:837–843

    Article  PubMed  CAS  Google Scholar 

  • Ross ED, Rush AJ (1981): Diagnosis and neuroanatomical correlates of depression in brain damaged patients. Arch Gen Psychiatry 38:1344–1354

    Article  PubMed  CAS  Google Scholar 

  • Schildkraut JJ (1978): Current status of the catecholamine hypothesis of affective disorders. In: Psychopharmacology: A Generation of Progress, Lipton MA, DiMascio A, Killam KF eds. New York: Raven Press, 1223–1234.

    Google Scholar 

  • Seligman MEP, Maier SF (1967): Failure to escape traumatic shock. J Exp Psychol 74:1–9

    Article  PubMed  CAS  Google Scholar 

  • Sinyor D, Jacques P, Kaloupek DG, Becker R, Gildenberg M, Coopersmith H (1986): Post-stroke depression and lesion location: an attempted replication. Brain109:531–546

    Article  Google Scholar 

  • Symon L, Crockard HA, Dorsch NWC, Branston NM, Juhasz J (1975): Local cerebral blood flow and vascular reactivity in a chronic stable stroke in baboons. Stroke 6:482–492

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Swanson LW, Koob GF (1984): Electrolytic lesions of the substantia innominata and lateral preoptic area attenuate the ‘supersensitive’ locomotor response to apomorphine resulting from denervation of the nucleus accumbens. Brain Res 506:141–148.

    Article  Google Scholar 

  • Yamori, Okamoto K (1974): Spontaneous hypertensionin the rat a model of essential hypertension. In: Proceedings of the 80th Congress of German Society for Internal Medicine. April 21–25. Wiesbaden: Springer Verlag, Berlin

    Google Scholar 

  • Zervas NT, Hon H, Negora M, Wurtman RJ, Larin F, Lavyne MH (1974): Reduction of brain dopamine following experimental cerebral ischemia. Nature (London) 247:283–284

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Boston

About this chapter

Cite this chapter

Robinson, R.G. (1989). The Use of an Animal Model to Study Post-Stroke Depression. In: Koob, G.F., Ehlers, C.L., Kupfer, D.J. (eds) Animal Models of Depression. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6762-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6762-8_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6764-2

  • Online ISBN: 978-1-4684-6762-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics