Advertisement

Computing Bifurcation Diagrams for Large Nonlinear Variational Problems

  • Helmut Jarausch
  • Wolfgang Mackens
Part of the Progress in Scientific Computing book series (PSC, volume 7)

Abstract

We report on a method to reduce the computational effort of computing bifurcation diagrams for large nonlinear parameterdependent systems of variational type. Included are techniques to find a point on a branch, to trace solution branches, to detect singularities, to compute turning points, simple and double nondegenerate bifurcation points and to calculate emanating directions from bifurcation points. The perfor-mance of the method is demonstrated at two examples.

Keywords

Singular Point Bifurcation Point Small System Full System Solution Branch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Brezzi, F., Rappaz, T., Raviart, P.: Finite dimensional approximation of nonlinear problems. Part III. Simple bifurcation points, Numer. Math. 38, 1–30, 1981.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Beyn, W.-J.: A note on the Lyapunov-Schmidt reduction. Manuscript, Univ. of Konstanz, 1982.Google Scholar
  3. [3]
    Beyn, W.-J.: Defining equations for singular solutions and numerical applications, pp. 42–56 in [13].Google Scholar
  4. [4]
    Descloux, J., Rappaz, J.: Approximation of solution branches of nonlinear equations. R.A.I.R.O. Anal. Num. 16, 319–349, 1982.MathSciNetMATHGoogle Scholar
  5. [5]
    Deuflhard, P., Fiedler, B., Kunkel, P.: Efficient numerical pathfollowing beyond critical points. Preprint no 278, Univ. of Heidelberg, SFB 123, 1984.Google Scholar
  6. [6]
    Iooss, G., Joseph, D.D.: Elementary stability and bifurcation theory, Springer, New York, 1980.MATHGoogle Scholar
  7. [7]
    Jarausch, H., Mackens, W.: A fast globally convergent scheme to compute stationary points of elliptic variational problems. Report 15 of the Institut fuer Geometrie und Praktische Mathematik, R.W.T.H., Aachen, 1982.Google Scholar
  8. [8]
    Jarausch, H., Mackens, W.: Computing solution branches by use of a Condensed Newton — Supported Picard iteration scheme. ZAMM 64, T282–T284, 1984.MathSciNetMATHGoogle Scholar
  9. [9]
    Jarausch, H., Mackens, W.: Numerical treatment of bifurcation branches by adaptive condensation. pp. 296–309 in [13].Google Scholar
  10. [10]
    Jarausch, H., Mackens, W.: Solving large nonlinear equations by an adaptive condensation process. Report 29 of the Institut fuer Geometrie und Praktische Mathematik, R.W.T.H., Aachen, to appear.Google Scholar
  11. [11]
    Jepson, A.D., Spence, A.: Singular points and their computation, pp. 195–209 in [13].Google Scholar
  12. [12]
    Kahan, W., Parlett, B.N., Jiang, E.: Residual bounds on approximate eingensystems of nonnormal matrices. SIAM J. Numer. Anal. 19, 407–484, 1982.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. pp. 359–384 in P.H. Rabinowitz[ed.]: Applications of bifurcation theory. Academic Press, New York, 1977.Google Scholar
  14. [14]
    Kuepper, T., Mittelmann, H.D., Weber, H. [eds.]: Numerical methods for bifurcation problems, ISNM 70, Birkhaeuser Verlag, Basel 1984.Google Scholar
  15. [15]
    Mackens, W.: A note on an adaptive Lyapunov-Schmidt reduction at secondary bifurcation points. Preprint of the Institut fuer Geometrie und Praktische Mathematik, R.W.T.H., Aachen, 1985.Google Scholar
  16. [16]
    McLeod, J.B., Sattinger, D.: Loss of stability and bifurcation at a double eigenvalue. J. Funct. Anal. 14, 62–84, 1973.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Melhem, R.G., Rheinboldt, W.C.: Comparison of methods for determining turning points of nonlinear equations. Computing 29, 201–226, 1982.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Mittelmann, H.D.: Multi-level continuation techniques for nonlinear boundary value problems with parameter dependence. Report of Arizona State University, 1985.Google Scholar
  19. [19]
    Rappaz, J., Raugel, G.: Finite dimensional approximation of bifurcation problems at a multiple eigenvalue. Report no 71, Centre de Mathematiques appliquees, Ecole Polytechnique, Palaiseau, 1981.Google Scholar

Copyright information

© Birkhäuser Boston 1987

Authors and Affiliations

  • Helmut Jarausch
  • Wolfgang Mackens

There are no affiliations available

Personalised recommendations