Numerical Pathfollowing Beyond Critical Points in ODE Models

  • P. Deuflhard
  • B. Fiedler
  • P. Kunkel
Part of the Progress in Scientific Computing book series (PSC, volume 7)


The paper deals with extensions of a continuation technique, that has recently been suggested and worked out by the authors. For turning point problems, an efficient technique is designed, which may be combined with any boundary value problem solver. For (simple) bifurcation points, several augmented systems are discussed in detail on the basis of stability considerations for ordinary differential equations. For difference or collocation methods, two efficient augmented systems are given. For multiple shooting techniques, an efficient and theoretically satisfactory treatment could only be found for “not too stiff” ODEs.


Bifurcation Point Multiple Shooting Augmented System Continuation Technique Kernel Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    U. Ascher, I. Christiansen, R.D. Russell: A Collocation Solver for Mixed Order Systems of Boundary Value Problems. Math. Comp. 33, 659–679 (1979).MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    D.W. Decker, H.B. Keller, C.T. Kelley: Convergence Rates for Newton’s Method at Singular Points. SIAM J. Numer.Anal. 20, 296–314 (1983).MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    P. Deuflhard: Nonlinear Equation Solvers in Boundary Value Problem Codes. In: Childs et al. (ed.): Codes for Boundary-Value Problems in Ordinary Differential Equations (1979). Springer Verlag.Google Scholar
  4. [4]
    P. Deuflhard: Computation of Periodic Solutions of Nonlinear ODE’s. BIT 24, 456–466 (1984).MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    P. Deuflhard: Recent Progress in Extrapolation Methods for Ordinary Differential Equations. SIAM Rev., 27, 505–535 (1985)MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    P. Deuflhard, G. Bader: Multiple Shooting Techniques Revisited. Univ. Heidelberg, SFB 123: Tech.Rep. 163 (1982).Google Scholar
  7. [7]
    P. Deuflhard, B. Fiedler, P. Kunkel: Efficient Numerical Pathfol-lowing Beyond Critical Points. Univ. Heidelberg, SFB 123: Tech.Rep. 273 (1984).Google Scholar
  8. [8]
    E.J. Doedel: AUTO-version Sept. 84 (VAX/VMS) Concordia Univ., Montreal: Comp.Sci. Dep.: Tech.Rep. (1984).Google Scholar
  9. [9]
    E.J. Doedel, J.P. Kernevez: Software for Continuation Problems in Ordinary Differential Equations with Applications (Sept. 84).Google Scholar
  10. [10]
    J.P. Keener, H.B. Keller: Perturbed Bifurcation Theory. Arch.Rat. Mech.Anal. 50, 159–175 (1973).MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    H.B. Keller: Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. In [16], 359–384 (1977).Google Scholar
  12. [12]
    M. Lentini, V. Pereyra: An adaptive finite difference solver for nonlinear two-point boundary value problems with mild boundary layers. SIAM J.Numer.Anal. 14, 91–111 (1977).MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    M. Lentini, M. Osborne, R. Russell: The Close Relationships between Methods for Solving Two-Point Boundary Value Problems.SIAM J. Numer.Anal. 22, 280–309 (1985).MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    H.D. Mittelmann, H. Weber (ed.): Bifurcation Problems and their Numerical Solution. Birkhäuser/Boston: ISNM 54 (1980).MATHGoogle Scholar
  15. [15]
    G. Moore: The Application of Newton’s Method to Simple Bifurcation and Turning Point Problems. Univ. Bath: Ph.D. Thesis (1979).Google Scholar
  16. [16]
    P.H. Rabinowitz (ed.): Applications of Bifurcation Theory. Academic Press, New York, San Francisco, London (1977).MATHGoogle Scholar
  17. [17]
    R. Seydel: Numerical computation of branch points in ordinary differential equations. Numer.Math. 32, 51–68 (1979).MathSciNetCrossRefGoogle Scholar
  18. [18]
    R. Seydel: Branch Switching in Bifurcation Problems for Ordinary Differential Equations. Numer.Math. 41, 93–116 (1983).MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    R. Seydel: BIFPACK- a Program Package for Calculating Bifurcations SUNY, Buffalo (1983).Google Scholar
  20. [20]
    J. Stoer, R. Bulirsch: Introduction to Numerical Analysis. Springer (1980).Google Scholar
  21. [21]
    H. Weber: Numerische Behandlung von Verzweigungsproblemen bei gewöhnlichen Differentialgleichungen. Numer.Math. 32, 17–29 (1979).MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    H. Weber: Shooting Methods for Bifurcation Problems in Ordinary Differential Equations. In [14], 185–210 (1980).Google Scholar
  23. [23]
    R. Winzen: Numerische Behandlung periodischer Lösungen dynamischer Systeme mit Paramterabhängigkeit. University of Heidelberg: Diploma thesis (1984).Google Scholar

Copyright information

© Birkhäuser Boston 1987

Authors and Affiliations

  • P. Deuflhard
  • B. Fiedler
  • P. Kunkel

There are no affiliations available

Personalised recommendations