Advertisement

Numerical Problems Arising from the Simulation of Combustion Phenomena

  • J. Warnatz
Part of the Progress in Scientific Computing book series (PSC, volume 7)

Abstract

Combustion processes result from a complex interaction of convection, transport, and chemical reaction. Thus, simulation needs much computational effort and must (at present) be restricted to relatively simple cases. Combustion calculations on three different levels of complexity are considered:
  1. (1)

    Chemistry of auto-ignition processes e.g. in shock tubes and Otto engines: Simulation of this zero-dimensional problem leads to large stiff and non-linear differential/algebraic systems which are solved by implicit and semi-implicit methods.

     
  2. (2)

    Flame propagation and flame front structure: This stationary one-dimensional problem is solved with an implicit finite-difference method, using a simplified linearization considering diagonal elements of the Jacobian only.

     
  3. (3)

    Ignition/quenching problems: This instationary one-dimensional problem, after discretization by finite differences, leads to large differential/algebraic systems which are solved both by BDF and extrapolation methods.

     

Keywords

Shock Tube Flame Propagation Ignition Delay Time Flame Velocity Explosion Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Lewis, G.von Elbe, Combustion, Flames, and Explosions in Gases, Academic Press, New York (1961)Google Scholar
  2. [2]
    J. Warnatz, 18th Symposium (International) on Combustion, p.369. The Combustion Institute, Pittsburgh (1981)Google Scholar
  3. [3]
    J. Warnatz, Survey of Rate Coefficients in the C/H/O System, in: W. C. Gardiner (ed.), Combustion Chemistry. Springer, New York (1984)Google Scholar
  4. [4]
    J. Warnatz, 20th Symposium (International) on Combustion, p.845. The Combustion Institute, Pittsburgh (1985)Google Scholar
  5. [5]
    J. Warnatz, H. Bockhorn, A. Möser, and H. W. Wenz, 19th Symposium (International) on Combustion, p.197, The Combustion Institute, Pittsburgh (1983)Google Scholar
  6. [6]
    J. Warnatz, Ber. Bunsenges. Phys. Chem.87, 1008 (1983)Google Scholar
  7. [7]
    F. Dryer, I. Glassman, in: C. T. Bowman, J. Birkeland (ed.), Alternative Hydrocarbon Fuels, Combustion and Kinetics. AIAA, New York (1979)Google Scholar
  8. [8]
    F. O. Rice, JACS 55, 3035 (1933)CrossRefGoogle Scholar
  9. [9]
    C. Esser, U. Maas, J. Warnatz, Proc. Intl. Symp. on Diagnostics and Modelling of Combustion in Reciprocating Engines, p.335. The Japanese Society of Mechanical Engineers, Tokyo (1985)Google Scholar
  10. [10]
    L. Petzold, “A Description of DASSL: A Differential/Algebraic System Solver,” IMACS World Congress, Montreal (1982)Google Scholar
  11. [11]
    P. Deuflhard, E. Hairer, J. Zugck, “One-Step and Extrapolation Methods for Differential-Algebraic Systems,” Uni Heidelberg, SFB 123, Technical Report 318 (1985)Google Scholar
  12. [12]
    W. C. Gardiner, J. M. Simmie, R. Zellner, K. Niemitz, J. Warnatz, in: Flames, Lasers, and Reactive Systems (J. R. Bowen, N. Manson, A. K. Oppenheim, and R. I. Soloukhin eds.), Progress in Astronautics and Aeronautics 88, 252 (1983)Google Scholar
  13. [13]
    C. M. Coats, A. Williams, 17th Symposium (International) on Combustion, p.611. The Combustion Institute, Pittsburgh (1979)Google Scholar
  14. [14]
    H. K. Kamptner, in: K. Winnacker, L. Küchler, Chemische Technologie, Vol.3, p.176. Hansen Verlag, München (1971)Google Scholar
  15. [15]
    J. R. Smith, R. M. Green, C. K. Westbrook, W. J. Pitts, 20th Symposium (International) on Combustion (1985), p.91. The Combustion Institute, Pittsburgh (1985)Google Scholar
  16. [16]
    J. Warnatz, Ber. Bunsenges. Phys. Chem. 82, 193 (1978)Google Scholar
  17. [17]
    J. Warnatz, Ber. Bunsenges. Phys. Chem. 82, 643 (1978)Google Scholar
  18. [18]
    J. M. Heimerl, T. P. Coffee, in: N. Peters, J. Warnatz (ed.), Numerical Methods in Laminar Flame Propagation, Vieweg, Wiesbaden (1982)Google Scholar
  19. [19]
    J. Warnatz, in: N. Peters, J. Warnatz (ed.), Numerical Methods in Laminar Flame Propagation, Vieweg, Wiesbaden (1982)Google Scholar
  20. [20]
    R. J. Kee, J. A. Miller, J. Warnatz, “A Fortran Computer Code Package for the Evaluation of Gas Phase Viscosities, Conductivities, and Diffusion Coefficients,” Report SAND83–8209. Sandia National Laboratories, Livermore (1983)Google Scholar
  21. [21]
    J. Warnatz, Ber. Bunsenges. Phys. Chem. 82, 834 (1978)Google Scholar
  22. [22]
    J. Warnatz, in: K. Ebert, P. Deuflhard, W. Jäger (ed.), Modelling of Chemical Reaction Systems, p.162. Springer, Heidelberg (1981)Google Scholar
  23. [23]
    D. L. Baulch, D.D. Drysdale, J. Duxbury, S. Grant, Evaluated Kinetic Data for High Temperature Reactions Vol.1: Homogeneous Gas Phase Reactions of the H2-O2 System. But-terworths, London (1972)Google Scholar
  24. [24]
    D.L. Baulch, D.D. Drysdale, D.G. Horne, A.C. Lloyd, Evaluated Kinetic Data for High Temperature Reactions Vol.3: Homogeneous Gas Phase Reactions in the O2-O3 System, the CO-CO2-H2 System, and of the Sulfur-containing Species. Butterworths, London (1976)Google Scholar
  25. [25]
    J. Warnatz, Comb. Sci. Technol. 34, 177 (1983)CrossRefGoogle Scholar
  26. [26]
    J. Warnatz, in: V.K. Baev (ed.), Proceedings of the Workshop on Gas Flame Structure, p.190. USSR Academy of Sciences, Novosibirsk (1983)Google Scholar
  27. [27]
    J. Warnatz, in: R. Glowinski, B. Larrouturou, R. Temam, Numerical Simulation of Combustion Phenomena. Springer, Heidelberg (1985)Google Scholar
  28. [28]
    H.Bockhorn, W.Weyrauch, J.Warnatz, publication in preparationGoogle Scholar
  29. [29]
    B. Raffel, J. Warnatz, H. Wolff, J. Wolfrum, R.J. Kee, Progress in Aeronautics and Astronautics. AAIA (1986), in pressGoogle Scholar
  30. [30]
    B. Raffel, J. Warnatz, J. Wolfrum, Appl. Phys. B37, 189 (1985)Google Scholar
  31. [31]
    F.N. Fritsch, J. Butland, SIAM J. Sci. Stat. Comput. 5, 300 (1984)MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    U.Maas, J.Warnatz, submitted for publication in “Comb. Flame”Google Scholar

Copyright information

© Birkhäuser Boston 1987

Authors and Affiliations

  • J. Warnatz

There are no affiliations available

Personalised recommendations