Extrapolation Integrators for Quasilinear Implicit ODEs

  • P. Deuflhard
  • U. Nowak
Part of the Progress in Scientific Computing book series (PSC, volume 7)


This paper Heals with quasilinear implicit ODEs of the form
$$ {\text{B}}\left( {\text{y}} \right){\text{y' = f}}\left( {\text{y}} \right) $$
.The main emphasis of the paper will be on problems, where B is nonsingu-lar (index = 0). Extensions to problems with index = 1, where B is singular, are also included. In large scale scientific computing, problems of the type (0.1) may arise e.g. in chemical reaction kinetics, when thermodynamic equations are added, or in method of lines treatment for time-dependent PDEs with moving spatial grids (compare Miller [8,9], Hyman [6]).


Multistep Method Matrix Pencil Combustion Problem Ordinary Differential Equation Solver Sufficient Uniqueness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Deuflhard: Recent Progress in Extrapolation Methods for ODEs. SIAM Rev., 27, 505–535 (1985)MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    P. Deuflhard, E. Hairer, J. Zugck: One-Step and Extrapolation Methods for Differential-Algebraic Systems. Univ. Heidelberg, SFB 123: Tech. Rep. 318Google Scholar
  3. [3]
    F. Gantmacher: The Theory of Matrices, Vol. 2, New York: Chelsea (1959).MATHGoogle Scholar
  4. [4]
    G.H. Golub, V. Pereyra: The Differentiation of Pseudoinverses and Nonlinear Least Squares Problems whose Variables Separate, SIAM J. Numer.Anal. 10, 413–432 (1973).MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    A.C. Hindmarsh: LSODE and LSODI, Two New Initial Value Ordinary Differential Equation Solvers, ACM-SIGNUM Newsletters 15, 10–11 (1980).CrossRefGoogle Scholar
  6. [6]
    J.M. Hyman: Moving Mesh Methods for Initial Boundary Value Problems, Los Alamos National Laboratory, Tech.Rep. (1985).Google Scholar
  7. [7]
    R. März: Correctness and Isolatedness in the Case of Initial and Boundary Value Problems in Differential Algebraic Equations, Humboldt-Univ. Berlin, Sektion Mathematik: Preprint Nr. 73 (1984).Google Scholar
  8. [8]
    K. Miller: Moving Finite Elements II, SIAM J.Numer.Anal. 18, 1033–1057 (1981).MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    K. Miller, R.N. Miller: Moving Finite Elements I, SIAM J.Numer.Anal. 18, 1019–1032 (1981).MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    U. Nowak: Extrapolation Methods for Instationary Reaction-Diffusion Systems, work done in preparation of a dissertation (1985).Google Scholar
  11. [11]
    U. Nowak, D. Walkowiak: Numerical Simulation of Large Chemical Reaction Kinetics Including Thermodynamics, in preparation.Google Scholar
  12. [12]
    N. Peters, J. Warnatz (Eds.): Numerical Methods in Laminar Flame Propagation, Notes on Numerical Fluid Dynamics 6, Vieweg (1982).Google Scholar
  13. [13]
    L. Petzold: A Description of DASSL: A Differential/Algebraic System Solver, Proc. IMACS World Congress 1982, to appear.Google Scholar
  14. [14]
    W.C. Rheinboldt: Differential-Algebraic Systems as Differential Equations on Manifolds, Math.Comp. 43, 473–482 (1985).MathSciNetCrossRefGoogle Scholar
  15. [15]
    J. Zugck: Numerische Behandlung linear-impliziter Differentialgleichungen mit Hilfe von Extrapolationsmethoden, Univ. Heidelberg, Inst.Angew.Math.: Diplomarbeit (1984).Google Scholar

Copyright information

© Birkhäuser Boston 1987

Authors and Affiliations

  • P. Deuflhard
  • U. Nowak

There are no affiliations available

Personalised recommendations