Optimal Production Scheme for the Gosau Hydro Power Plant System

  • W. Bauer
  • H. Gfrerer
  • E. Lindner
  • A. Schwarz
  • Hj. Wacker
Part of the Progress in Scientific Computing book series (PSC, volume 7)


In Austria an important tool for controlling energy production is given by a suitable use of hydro energy storage plants. About 22% of the yearly electric energy production is done by plants of this type which serve for two main purposes:
  1. (i)

    peak power production

  2. (ii)

    shifting energy production into those periods of time where the energy consumption is high, for instance, in winter.



Power Company Seepage Loss Yearly Energy Production Spilling Water Sinking Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Barwig/R. Peßl, Optimization of the Gosau System, in “Applied Optimization Techniques in Energy Problems (Proceedings), Teubner pp. 94–118, 1985Google Scholar
  2. [2]
    P. Deuflhard/V. Apostolescu, A Study of the Gauss-Newton Method for the Solution of Nonlinear Least Squares Problems, in:Frehse/ Pallaschke/Trottenberg (ed.): Special Topics of Applied Mathematics, Amsterdam, North-Holland Publ. pp.l29–15o (1980)Google Scholar
  3. [3]
    H. Engl/Hj. Wacker/E. Zarzer: Ausgewählte Kapitel der Kontrolltheorie, in: Computergestützte Planungssysteme (ed.Noltemeier), Physica Verlag, Würzburg, pp. 155–202 (1976)Google Scholar
  4. [4]
    A. Gaillard/H. Brlingger, Speicherbewirtschaftung, Studienberichte Heft 17, Institut für Operations Research IFOR, ETH-Zürich, pp. 1–15, 1984Google Scholar
  5. [5]
    H. Gfrerer/J. Guddat/Hj. Wacker, A globally convergent algorithm based on imbedding and parametric optimization, Computing 3o, pp. 225–252 (1983)MathSciNetCrossRefGoogle Scholar
  6. [6]
    H. Gfrerer, Globally convergent decomposition methods for nonconvex optimization problems, Computing 32, 199–227 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    H. Gfrerer, Optimization of hydro energy storage plant problems by variational methods, ZOR/B, Bd. 28, 87–101 (1984)MathSciNetzbMATHGoogle Scholar
  8. [8]
    H. Gfrerer, Optimization of storage plant systems by decomposition, in: “Applied Optimization Techniques in Energy Problems (Proceedings), Teubner, 215–226, 1985Google Scholar
  9. [9]
    H. Gfrerer/J. Guddat/Hj. Wacker/W. Zulehner, Path following methods for Kuhn-Tucker-Curves by an active index set strategy, in: Proc. Parametric Optimization, Springer Lecture Notes (ed.l. Jongen), 1985Google Scholar
  10. [l0]
    H. Habibollazadeh, Optimal Short-Time Operation Planning of Hydroelectric Power Systems, Royal Institute of Technology, Department of Electric Power System Engineering, Stockholm, Sweden, 1983Google Scholar
  11. [11]
    P. G. Harhammer/M. A. Muschik/A. Schadler, Optimization of Large Scale MIP Models, Operation Planning of Energy Systems, in: “Applied Optimization Techniques in Energy Problems, Teubner, 286–322, 1985Google Scholar
  12. [12]
    A. Kalliauer, Compactification and decomposition methods for NLP problems with nested structures in hydro power system planning, in: “Survey of Mathematical Programming”, Proc.of the 9th Intern. Mathematical Programming Symposium, Budapest, August 23–27, 1976 (ed.Prékopa, Publ.House of the Hungarian Academy of Sciences, pp. 243–258.Google Scholar
  13. [13]
    E. Lindner/Hj. Wacker, Input Parameter for the Optimization of the System Partenstein: Forecasting of the Influx, Determination of the Efficiency Function, in:”Applied Optimization Techniques in Energy Problems (Proceedings), Teubner, 286–322, 1985Google Scholar
  14. [14]
    A. Prékopa et al., Studies in Applied Stochastic Programming (ed. A. Prékopa), Tanulmányok 80, 1–209 (1978)Google Scholar
  15. [15]
    T. G. Roefs/L. D. Bodin, Multireservoir Operation Studies, Water Resources Research, Vol. 6, Nr. 2, pp. 410–420, 1970CrossRefGoogle Scholar
  16. [16]
    F. G. Rhode/K. Naparaxawong, Modified Standard Operation Rules for Reservoirs, Journal of Hydrology, 51, pp. 169–177, 1981CrossRefGoogle Scholar
  17. [17]
    G. Schmitz/J. Edenhofer, Flood Routing in the Danube River by the New Implicit Method of Characteristics (IMOC) 3rd Int. Appl.Math. Modelling Conference, Hamburg, pp. 1–3, 1980Google Scholar
  18. [18]
    H. Schwetlick/Tiller, Numerical Methods for Estimating Parameters in Nonlinear Models with Errors in the Variables, Preprint Nr.69, Univ.Halle, Sektion Mathematik, 1–25 (1982)Google Scholar
  19. [19]
    K. Theilsiefje, Ein Beitrag zur Theorie der wirtschaftlichen Ausnutzung großer Speicherseen zur Energieerzeugung, ETZ-A, Bd.82 H17, pp.538–545, 1981Google Scholar
  20. [20]
    Hj. Wacker, Mathematical Techniques for the Optimization of Storage Plants, in “Applied Optimization Techniques in Energy Problems (Proceedings), Teubner, 405–448, 1985Google Scholar
  21. [21]
    Hj. Wacker, Applied Optimization Techniques in Energy Problems (Proceedings) Teubner, 1–485, 1985Google Scholar
  22. [22]
    Hj. Wacker/W. Bauer/S. Buchinger, Einsatz mathematischer Methoden bei der Hydroenergiegewinnung, ZAMM 63, pp.227–243 (1983)Google Scholar
  23. [23]
    Hj. Wacker/W. Bauer/H. Gfrerer/E. Lindner/A. Schwarz, Erzeugungsoptimierung in Wasserkraftwerken, Arbeitsbericht für das BMfWF/ OKA, pp. 1–220 (1985)Google Scholar
  24. [24]
    W. G. Yeh/W. Z. Trott/A. M. Asce, Optimization of Multiple Reservoir System, Journal of the Hydraulics Division, pp.1865–1884, 1973Google Scholar

Copyright information

© Birkhäuser Boston 1987

Authors and Affiliations

  • W. Bauer
  • H. Gfrerer
  • E. Lindner
  • A. Schwarz
  • Hj. Wacker

There are no affiliations available

Personalised recommendations