Advertisement

A Direct Algebraic Algorithm in Computerized Tomography

  • Hermann Kruse
  • Frank Natterer
Part of the Progress in Scientific Computing book series (PSC, volume 7)

Abstract

In computerized tomography an x-ray source is moved around a body, the initial intensity IO of the x-rays is known, the intensity I after having passed the body is measured. A simple physical model yields the equation
$$I = {I_o} \cdot \exp ( - \int\limits_L {f(x)dx} ))$$
(1.1)
with L being the way of the x-ray through the body and f(x) the attenuation coefficient of the tissue at the point x which is to be reconstructed by these values. See Herman [8] for the principles of computerized tomography.

Keywords

Toeplitz Operator Toeplitz Matrice Exterior Problem Floating Point Operation Interior Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bareiss, E.H.: Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices, Numer. Math. 13, pp. 404–424 (1969).MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Bitmead, R.R., Anderson, B.D.O.: Asymptotically fast solution of Toeplitz and related systems of equations, Linear Algebra and Appl. 34, pp. 103–116 (1980).MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Bunch, J.R.: Stability of methods for solving Toeplitz systems of equations, SIAM J. Sci. Stat. Comput. 6, pp. 349–364 (1985).MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Buonocore, M.H., Brody, W.R., Macovski, A.: A natural pixel decomposition for two-dimensional image reconstruction, IEEE Trans. Biomed. Eng. BME-28, No. 2 (1981).Google Scholar
  5. [5]
    Freidlander, B., Kailath, T., Morf, M., Ljung, L.: New inversion formulas for matrices classified in terms of their distance from Toeplitz metrices, Linear Algebra and Appl. 27, pp. 31–60 (1979).MathSciNetCrossRefGoogle Scholar
  6. [6]
    Gordon, R., Bender, R., Herman, G.T.: Algebraic Reconstruction Techniques (ART) for three dimensional electron microscopy and x-ray photography, J. Theor. Biol. 29, pp.471–481 (1970).CrossRefGoogle Scholar
  7. [7]
    Guenther, R.B., Kerber, C.W., Killian, E.K., Smith, K.T. Wagner, S.L.: Reconstruction of objects from radiographs and the location of brain tumors, Proc. Nat. Acad. Sci. USA 71, pp. 4884–4886 (1974).MathSciNetCrossRefGoogle Scholar
  8. [8]
    Herman, G.: Image reconstruction from projections, the fundamentals of computerized tomography, Academic Press 1980.MATHGoogle Scholar
  9. [9]
    Hounsfield, G.N.: Computerized transverse axial scanning tomography: Part I, description of the system, Br. J. Radiol. 46, pp. 1016–1022 (1973).CrossRefGoogle Scholar
  10. [10]
    Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen, Bull. Int. Acad. Pol. Sci. Lett. A, pp. 355–357 (1937).Google Scholar
  11. [11]
    Kailath, T., Vieira, A., Morf, M.: Inverses of Toeplitz operators, innovations and orthogonal polynomials, SIAM Rev. 20, pp. 106–119 (1978).MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Kailath, T., Levy, B., Ljung, L., Morf, M.: The factorization and representation of operators in the algebra generated by Toeplitz operators, SIAM J. Appl. Math. 37, pp. 467–484 (1979).MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Lent, A.: Seminar talk at the Biodynamic Research Unit, Mayo Clinic, 1975.Google Scholar
  14. [14]
    Louis, A.K., Natterer, F.: Mathematical problems in computerized tomography, Proc. IEEE, Vol. 71, pp. 379–389 (1983).CrossRefGoogle Scholar
  15. [15]
    Natterer, F.: Efficient implementation of ‘optimal’ algorithms in computerized tomography, Math. Meth. in the Appl. Sci. 2, pp. 545–555 (1980).MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Natterer, F.: Einige Beiträge der Mathematik zur Computer-Tomographie, ZAMM 64, T252–T260 (1984).MathSciNetMATHGoogle Scholar
  17. [17]
    Trench, W.: An algorithm for the inversion of finite Toeplitz matrices, SIAM J. Appl. Math. 12, pp. 515–522 (1964).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1987

Authors and Affiliations

  • Hermann Kruse
  • Frank Natterer

There are no affiliations available

Personalised recommendations