Numerical Backprojection in the Inverse 3D Radon Transform

  • A. K. Louis
  • R. M. Lewitt
Part of the Progress in Scientific Computing book series (PSC, volume 7)


In this paper we study the error caused by numerically approximating the integral over the sphere in three dimensions as part of Radon’s inversion formula. Using special functions we demonstrate that, if suitable filters in the first reconstruction step — differenciation of order two — are used, essential errors are produced only outside the region of interest. The directions needed in measuring the data fulfil also another requirement, they guarantee optimal resolution in the reconstruction.


Discrete Fourier Transform Integration Formula Inverse Fourier Transform Inversion Formula Exact Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abramowitz, M., Stegun, I.A.: Handbook of mathematical formulas, New York: Dover, 1965Google Scholar
  2. [2]
    Erdelyi, A., Magnuus, W., Oberhettinger, F., Tricomi, F.: Tables of integral transforms, Vol. II, New York: McGraw Hill, 1954MATHGoogle Scholar
  3. [3]
    Gradshteyn, I.S., Ryzhik, I.M.: Tables of integrals, series and products, New York: Academic Press, 1980Google Scholar
  4. [4]
    Lewitt, R.M.: Reconstruction algorithms: Transform methods, Proc. IEEE, 71, 390–408, 1983CrossRefGoogle Scholar
  5. [5]
    Louis, A.K.: Orthogonal function series expansions and the null space of the Radon transform, SIAM J. Math. Anal. 15, 621–633, 1984MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Louis, A.K.: Optimal sampling in nuclear magnetic resonance tomography, Comput. Assist. Tomogr. 6, 334–340, 1982CrossRefGoogle Scholar
  7. [7]
    Louis, A.K.: Approximate inversion of the 3D Radon transform, Math. Meth. Appl. Sci. 5, 176–185, 1982MathSciNetCrossRefGoogle Scholar
  8. [8]
    Louis, A.K.: Nonuniqueness in inverse Radon problems: The frequency distribution of the ghosts. Math. Z. 185, 429–440, 1984MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Louis, A.K., Natterer, F.: Mathematical problems of computerized tomography, Proc. IEEE 71, 379–389, 1983CrossRefGoogle Scholar
  10. [10]
    Ludwig, D.: The Radon transform on Euclidean spaces, Comm. Pure Appl. Math. 19, 49–81, 1966MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Marr, R.B., Chen, C.N., Lauterbur, P.C.: On two approaches to 3D reconstruction in NMR zeugmatography. In Herman, G.T., Natterer, F. (eds.): Mathematical aspects of computerized tomography, Berlin: Springer LNMI 8, 1981Google Scholar
  12. [12]
    Morse, P.M., Feshbach, H.: Methods of theoretical physics II, New York, McGraw Hill, 1953MATHGoogle Scholar
  13. [13]
    Shepp, L.A.: Computerized tomography and nuclear magnetic resonance, J. Comput, Assist. Tomogr. 4, 94–107, 1980MathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1987

Authors and Affiliations

  • A. K. Louis
  • R. M. Lewitt

There are no affiliations available

Personalised recommendations