A Numerical Method for Calculating Complete Theoretical Seismograms in Vertically Varying Media

  • Uri Ascher
  • Paul Spudich
Part of the Progress in Scientific Computing book series (PSC, volume 7)


A numerical method is presented for calculating complete theoretical seismograms. The earth models are assumed to have velocity, density and attenuation profiles which are arbitrary piecewise-continuous functions of depth only. Solutions for the stress-displacement vectors in the medium are expanded in terms of orthogonal cylindrical functions. The resulting two-point boundary value problems are integrated by a variety of schemes, automatically chosen to suit the type of wave solution. These schemes include collocation for low-frequency and for highly evanescent waves, various special methods for highly oscillatory waves and for turning waves, and combinations of those. A Fourier-Bessel transform is then applied to get back into the space-time domain.


Collocation Method Collocation Point Body Wave Evanescent Wave Synthetic Seismogram 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aki, K. & Richards, P.G., 1980. Quantitative Seismology, 1, W.H. Freeman, San Francisco.Google Scholar
  2. [2]
    Alekseev, A.S. & Mikhailenko, B.G., 1980. The solution of the dynamic problem of elastic wave propagation in inhomogeneous media by a combination of partial separation of variables and finite difference methods, J. Geophys. 48, 161–172.Google Scholar
  3. [3]
    Apsel, R.J., and Luco, J.E., 1983. On the Green’s functions for a layered half-space, Bull. Seism. Soc. Am., 73, 931–951.Google Scholar
  4. [4]
    Ascher, U. & Bader, G., 1985. Stability of collocation at Gaussian points, SIAM J. Numer. Anal., to appear.Google Scholar
  5. [5]
    Ascher, U., Christiansen, J. & Russell, R.D., 1977. A collocation solver for mixed order systems of boundary value problems, Math. Comp. 33, 659–679.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Ascher, U. & Spudich, P., 1985. A Hybrid collocation method for calculating complete theoretical seismograms in vertically varying media, Geophys. J. R. astr. Soc., to appear.Google Scholar
  7. [7]
    Ascher, U. & Weiss, R., 1984. Collocation for singular perturbation problems II: linear first order systems without turning points, Math. Comp. 43, 157–187.MathSciNetMATHGoogle Scholar
  8. [8]
    Chapman, C.H., 1973. The earth flattening approximation in body wave theory, Geophya. J. R. astr. Soc. 35, 55–70.MATHCrossRefGoogle Scholar
  9. [9]
    Chapman, C.H., 1974. The turning point of Elastodynamic waves, Geophya. J.R. astr. Soc. 39, 613–621.MATHCrossRefGoogle Scholar
  10. [10]
    Chapman, C.H., 1976. Exact and approximate generalized ray theory in vertically inhomogeneous media, Geophya. J.R. aatr. Soc. 46, 201–234.MATHCrossRefGoogle Scholar
  11. [11]
    Frazer, L.N. and Gettrust, J.F., 1984. On a generalization of Filon’s method and the computation of the oscillatory integrals of seismology, Geophya. J.R. astr. Soc. 76, 461–481.CrossRefGoogle Scholar
  12. [12]
    Haskell, N.A., 1953. The dispersion of surface waves on multilayered media, Bull. seism. Soc. Am. 43, 17–34.MathSciNetGoogle Scholar
  13. [13]
    Kennett, B.L.N., 1983. Seismic Wave Propagation is Stratified Media, Cambridge University Press.Google Scholar
  14. [14]
    Kennett, B.L.N. & Illingworth, M.R., 1981. Seismic waves in a stratified half space III — piecewise smooth models, Geophya. J.R. aatr. Soc. 66, 633–675.MATHCrossRefGoogle Scholar
  15. [15]
    Kennett, B.L.N. & Kerry, N.J., 1979. Seismic waves in a stratified half space, Gcophys. J.R. astr. Soc. 57, 557–583.MATHCrossRefGoogle Scholar
  16. [16]
    Olson, A.M., Orcutt, J.A. & Frazier, G.A., 1984. The discrete wavenumber/finite element method for synthetic seismograms, Geophya. J. R. aatr. Soc, 77, 421–460.MATHCrossRefGoogle Scholar
  17. [17]
    Phinney, R.A., 1965. Theoretical calculations of the spectra of first arrivals in layered elastic mediums, J. Geophya. Rea., 70, 5107–5123.CrossRefGoogle Scholar
  18. [18]
    Richards, P.G., 1971. Elastic wave solutions in stratified media, Geophyaica, 36, 798–809.CrossRefGoogle Scholar
  19. [19]
    Richards, P.G., & Frasier, C.W., 1976. Scattering of elastic waves from depth-dependent inhomogeneities, Geophysics, 41, 441–458.Google Scholar
  20. [20]
    Scheid, R., 1982. The accurate numerical solution of highly oscillatory ordinary differential equations, Ph.D. Thesis, Cal Tech.Google Scholar
  21. [21]
    Schwab, F., and Knopoff, L., 1972. Fast surface wave and free mode computations, in Methods of Computational Phyaica, 11, 87–180, ed. Bolt, B.A., Academic Press, New York.Google Scholar
  22. [22]
    Spudich, P. & Ascher, U., 1983. Calculation of complete theoretical seismograms in vertically varying media using collocation methods, Geophya. J. R. astr. Soc. 75, 101–124.MATHCrossRefGoogle Scholar
  23. [23]
    Takeuchi, II. & Saito, M., 1972, Seismic surface waves, in Metkods of Computational Physics, 11, 217–295, ed. Bolt, B.A. Academic Press, New York.Google Scholar

Copyright information

© Birkhäuser Boston 1987

Authors and Affiliations

  • Uri Ascher
  • Paul Spudich

There are no affiliations available

Personalised recommendations