Algorithms for Semiconductor Device Simulation

  • R. E. Bank
  • W. Fichtner
  • D. J. Rose
  • R. K. Smith
Part of the Progress in Scientific Computing book series (PSC, volume 7)


Semiconductor device simulation is a very challanging problem for the numerical analyst. Here we give a brief survey of the the problem, and describe those algorithms which we have found to be effective in its solution.


Doping Profile Perpendicular Bisector Finite Element Equation Metal Oxide Semiconductor Field Effect Multigrid Iteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. E. Bank and D. J. Rose “Some error estimates for the box method”, submitted, SIAM J. Numer. Anal. Google Scholar
  2. (2).
    R.E. Bank and D. J. Rose “Analysis of a mult-level iterative method for nonlinear finite element equations,” Math. of Comp 39 (1982) pp. 453–465.MathSciNetzbMATHGoogle Scholar
  3. (3).
    R. E. Bank, “A comparison of two multilevel iterative methods for nonsymmetric and indefinite finite element equations”, SIAM J, Numer, And 18 (1981) pp.724–743.MathSciNetzbMATHCrossRefGoogle Scholar
  4. (4).
    R. E. Bank, D. J. Rose, and W. Fichtner “Numerical methods for semiconductor device simulation,” IEEE Trans on Elect. Dev. ED-3Q (1983) pp.1031–1041.Google Scholar
  5. (5).
    R. E. Bank, W. M. Coughran Jr., W. Fichtner, E. H. Grosse, D. J. Rose, and R. K. Smith, “Transient simulation of silicon devices and circuits,” IEEE Trans on, Elect. Dev. to appear.Google Scholar
  6. (6).
    P. Concus, G. H. Golub and G. Meurant, Block Preconditioning for the Conjugate Gradient Method. Technical Report LBL-4856, Laurence Berkeley Laboratory, 1982.Google Scholar
  7. (7).
    R. Dutton, “Modeling of the silicon intergrated circuit design and manufacturing process” IEEE Trans. on Elect. Dev. ED-30 (1983) pp.968–985.Google Scholar
  8. (8).
    H. C. Ellman, Iterative Methods for Large. Sparse, Nonsymroetric Systems of Linear Equations. Yale University Computer Science Department Research Report 229, 1982.Google Scholar
  9. (9).
    W. Fichtner, D. J. Rose, and R. E. Bank, “Semiconductor Device Simulation”, IEEE Trans on Elect. Dev. ED 30 (1983) pp.1018–1030.CrossRefGoogle Scholar
  10. (10).
    A. F. Franz, G. A. Franz, S. Selberherr, C. Ringhofer, P. Markowich, “Finite boxes a generalization of finite differences suitable for semiconductor device simulation,” IEEE Trans on Elect Dev ED 30. (1983) pp.1070–1082.CrossRefGoogle Scholar
  11. (11).
    M. D. Huang, “Constant flow patch test — a unique guideline for the evaluation of discretization schemes for the current continunity equations,” IEEE Trans on Elect. Dev., to appear.Google Scholar
  12. (12).
    T. Kerkhoven, Op the Dependence of the Convergence of Gummel’s Algorithm on the Regularity of the Solution. Yale University Computer Science Department Technical Report RR-366, 1985.Google Scholar
  13. (13).
    M. Kurata, Numerical Analysis for Semiconductor Devics. Heath and Co, Lexington Mass. 1982.Google Scholar
  14. (14).
    M. S. Mock, “Analysis of a discretization algorithm for stationary continunity equations in semiconductor devices,” COMPEL 2 (1983) pp. 117–139.zbMATHGoogle Scholar
  15. (15).
    A. R. Newton and A. L. Sangiovanni-Vincentelli, “Relaxation based electrical sinulation”, IEEE Trans on Elect. Dev ED 30 (1983) pp.968–985.CrossRefGoogle Scholar
  16. (16).
    S. Sze Physics of Semiconductor Devices, 2nd ed. Wiley, New York, 1981.Google Scholar
  17. (17).
    R. S. Varga, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1962.Google Scholar

Copyright information

© Birkhäuser Boston 1987

Authors and Affiliations

  • R. E. Bank
  • W. Fichtner
  • D. J. Rose
  • R. K. Smith

There are no affiliations available

Personalised recommendations