Skip to main content

The Exact Hausdorff Measure of Brownian Multiple Points

  • Chapter
Seminar on Stochastic Processes, 1986

Part of the book series: Progress in Probability and Statistics ((PRPR,volume 13))

Abstract

Let B = (Bt,t ≧0) denote a d-dimensional Brownian motion, with d ≧ 2. Dvoretzky, Erdös, Kakutani and Taylor [2,3,4] have proved that the path of B has points of multiplicity p ≧ 2 if and only if one of the two following conditions is satisfied:

$$\frac{-d=2,p arbitrary}{-d=3,p=2} $$
(1.a)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. CIESIELSKI and S.J. TAYLOR. First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103, 434–450 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. DVORETSKY, P. ERDOS and S. KAKUTANI. Double points of paths of Brownian motion in n-.space. Acta Sci. Math. (Szeged) 12, 64–81 (1950).

    Google Scholar 

  3. A. DVORETBKY, P. ERDÖS and S. KAKUTANI. Multiple points of paths of Brownian motion in the plane. Bull. Res. Council Isr. Sect. F 3, 364–371 (1954).

    Google Scholar 

  4. A. DVORETSKY, P. ERDÖS, S. KAKUT’ANI and S. J. TAYLOR. Triple points of Brownian motion in 3-space. Proc. Carob. Philos. Soc. 53, 856–862 (1957).

    Article  Google Scholar 

  5. E.B. DYNKIN. Additive functionals of several time-reversible Markov processes. J. Funct. Anal. 42, 64–101 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  6. E.B. DYNKIN. Random fields associated with multiple points of the Brownian motion. J. Funct. Anal. 62, 397–434 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  7. B. FRISTEDT. An extension of a theorem of S.J. Taylor concerning the multiple points of the symmetric stable process. 2. Wahrsch. verw. Gebiete 9, 62–64 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  8. D. GEMAN, J. HOROWIT2 and J. ROSEN. A local time analysis of intersections of Brownian paths in the plane. Ann. Probab. 12, 86–107, (1984).

    MathSciNet  MATH  Google Scholar 

  9. J.F. LE GALL. Sur la saucisse de Wiener et les points multiples du mouvement brownien. Preprint (1984), to appear in Ann. Probab.

    Google Scholar 

  10. J.F. LE GALL. Sur la mesure de Hausdorff de la courbe brownienne. In: Séminaire de Probabilités XIX. Lect. Notes Math. 1123, p. 297–313. Berlin, Heidelberg, New-York: Springer 1985.

    Chapter  Google Scholar 

  11. J.F. LE GALL. Sur le temps local d’intersection du mouvement • brownien plan et la méthode de renormalisation de Varadhan. In: Séminaire de Probabilités XIX. Lect. Notes Math. 1123, p. 314–331. Berlin, Heidelberg, New-York, Springer 1985.

    Chapter  Google Scholar 

  12. J.F. LE GALL. Propriétés d’intersection des marches aléatoires, I. Convergence vers le temps local d’intersection. Comm. Math. Phys. 104, 471–507 (1986).

    MATH  Google Scholar 

  13. J.F. LE GALL. Le comportement du mouvement brownien entre les deux instants où il passe par un point double. Preprint (1985), to appear in J. Funct. Anal.

    Google Scholar 

  14. P. LEVY. La mesure de Hausdorff de la courbe du mouvement brownien. Giorn. Ist. Ital. Attuari, 16, 1–37 (1953).

    MathSciNet  Google Scholar 

  15. D. RAY. Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion. Trans. Amer. Math. Soc. 106, 436–444 (1963).

    MATH  Google Scholar 

  16. C.A. ROGERS, S.J. TAYLOR. Functions continuous and singular with respect to a Hausdorff measure. Mathematika 8, 1–31 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. ROSEN. Self-intersections of random fields. Ann. Probab. 12, 108–119 (1984).

    MATH  Google Scholar 

  18. J. ROSEN. A local time approach to the self-intersections of Brownian paths in space. Comm. Math. Phys. 88, 327–338 (1983).

    MATH  Google Scholar 

  19. S.J. TAYLOR. The exact Hausdorff measure of the sample path for planar Brownian motion. Proc. Carob. Philos. Soc. 60, 253–258 (1964).

    Article  MATH  Google Scholar 

  20. S.J. TAYLOR. Multiple points for the sample paths of the symmetric stable process. Z. Wahrsch. Verw. Gebiete 5, 247–264 (1966).

    Article  Google Scholar 

  21. S.J. TAYLOR. Sample path properties of processes with stationary independent increments. In: Stochastic Analysis, Kendall, D. and Harding, E. (eds). London, J. Wiley and Sons 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Birkhäuser Boston

About this chapter

Cite this chapter

Le Gall, JF. (1987). The Exact Hausdorff Measure of Brownian Multiple Points. In: Çinlar, E., Chung, K.L., Getoor, R.K., Glover, J. (eds) Seminar on Stochastic Processes, 1986. Progress in Probability and Statistics, vol 13. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6751-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6751-2_8

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6753-6

  • Online ISBN: 978-1-4684-6751-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics