Advertisement

Subordinators Regenerated

  • B. Maisonneuve
Part of the Progress in Probability and Statistics book series (PRPR, volume 13)

Abstract

Subordinators are much older objects than regenerative sets, as defined by Hoffmann — Jorgensen [3], and it is natural to try to deduce the structure of the second from the structure of the first. This was done in [5] through the existence of a local time for a perfect regenerative set.

Keywords

Local Time Random Measure Regeneration Property Complete Probability Space Poisson Random Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.M. Blumenthal and R.K. Getoor. — Markov Processes and Potential Theory, Academic Press, New-York, 1968.MATHGoogle Scholar
  2. [2]
    E. Çinlar and B. Maisonneuve. — The image of a markov additive process, (to appear).Google Scholar
  3. [3]
    J. Hoffmann-Jorgensen. — Markov sets, Mathematica Scandinavia, 24, fasc. 2, 0. 969 ).Google Scholar
  4. [4]
    B. Maisonneuve and PH. Morando. — Temps local d’un ensemble régénératif, Séminaire de Probabilités IV. Lecture Notes in Mathematics, Springer, Berlin, 124, 1970.Google Scholar
  5. [5]
    B. Maisonneuve. — Ensembles régénératifs, temps locaux et subordinateurs, Séminaire de Probabilités V. Lecture Notes in Mathematics, Springer, Berlin, 191, 1971.Google Scholar
  6. [6]
    B. Maisonneuve. — Systèmes Régénératifs, Astérisque 15, S.M.F., 1974.Google Scholar
  7. [7]
    P.A. Meyer. — Ensembles régénératifs, d’après Hoffmann- Jorgensen, Séminaire de Probabilités IV. Lecture Notes in Mathematics, Springer, Berlin, 124, 1970.Google Scholar

Copyright information

© Birkhäuser Boston 1987

Authors and Affiliations

  • B. Maisonneuve
    • 1
  1. 1.Universite de Grenoble III.M.S.S.Grenoble CedexFrance

Personalised recommendations