On the Duration of the Longest Excursion

  • F. B. Knight
Part of the Progress in Probability and Statistics book series (PRPR, volume 12)


Let Xt be a standard Markov process, and let 0 be a point regular of 0, so that there exists a continuous additive functional A(t) whose points of increase are contained in {t: Xt = 0}, called the local time at 0. Then A(t) is unique up to a constant factor which is of no relevance to the present paper (see [1] for a more complete discussion and references). We are concerned here with the durations of the excursions away from 0, which does not depend on the normalization of A(t). For arbitrary t ≥ 0, we set t0(t) = sup{s ≤ t: XS = 0}, tl(t) = inf{s ≥ t: XS = 0}, and d(t) = tl(t) - t0(t). Then we call d(t) the duration of the excursion from 0 containing t (we always assume X0 = 0, hence d(t) is well-defined when we permit d(t) = ∞).


Brownian Motion Local Time Strong Markov Property Routine Differentiation Brownian Excursion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Fristedt and S. J. Taylor, Constructions of local time for a Markov process, Z. Wahrsheinlichkeitstheorie verw. Gebiete 62 (1983), 73–112.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    K. Ito and H. P. McKean, Jr., Diffusion Processes and their sample paths, Academic Press, New York, 1965.MATHGoogle Scholar
  3. 3.
    F. B. Knight, Characterization of the Lévy measures of inverse local time of gap diffusion, Progress in Prob. Statist. 1, Birkhauser, Boston, Mass., 1981, 53–78.Google Scholar
  4. 4.
    F. B. Knight, Essentials of Brownian motion and diffusion, Math. Surveys, 18, Amer. Math. Soc, Providence, R. I., 1981.Google Scholar
  5. 5.
    N. Krylov and A. A. Juskevich, Markov random sets, Trans. Moscow Math. Soc. 13 (1965), 127–152.MATHGoogle Scholar
  6. 6.
    A. Le Breton and M. Musiela, A study of one-dimensional model for stochastic processes, Prob. Math. Statist. 2, Fasc 1 (1984), 91–107.Google Scholar
  7. 7.
    E. L. Lehmann, Theory of Point Estimation, J. Wiley and Sons, New York, 1983.Google Scholar
  8. 8.
    P. Lévy, Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, 1948.Google Scholar
  9. 9.
    B. O. Peirce, A Short Table of Integrals, Ginn and Co., Boston, 1914.Google Scholar
  10. 10.
    H. Rubin and H. Tucker, Estimating the parameters of a differential process, Ann. Math. Statist. 30 (1959), 641–658.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    F. G. Tricomi, Integral (Inline), Interscience Pub. Inc., New York, 1957.Google Scholar
  12. 12.
    M. Weil, Conditionnement par rapport au passé strict, Seminaire de Prob. V, Springer Lecture Notes Springer Verlag, (1971), 362–372.Google Scholar

Copyright information

© Birkhäuser Boston, Inc. 1986

Authors and Affiliations

  • F. B. Knight
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations