Skip to main content

Quasi-Stationary Distributions, Eigenmeasures, and Eigenfunctions of Markov Processes

  • Chapter
Seminar on Stochastic Processes, 1984

Part of the book series: Progress in Probability and Statistics ((PRPR,volume 9))

  • 352 Accesses

Abstract

Let Pt be a submarkov semigroup on a Lusin topological state space E with Borel field E. We call a positive sigma-finite measure m on E an eigenmeasure if mPt = e-ct m for some real number c. We call a positive E-measurable function f an eigenfunction if ptf = e-ctf for some real number c. In each case, we call c the eigenvalue of either the eigenmeasure or the eigenfunction. Eigenmeasures are also known by the name quasi-stationary distributions in the Markov chain literature: see [5], [17], [18].

Research supported in part by NSF Grant DMS-83182204

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M. BLUMENTHAL and R.K. GETOOR. Dual process and potential theory. Proc. 12th Biennial Seminar of the Canadian Math Soc. (1970), 137–156.

    Google Scholar 

  2. R.M. BLUMENTHAL and R.K. GETOOR. Markov Processes and Potential Theory. Academic Press, New York, 1968.

    MATH  Google Scholar 

  3. K.L. CHUNG and K.M. RAO. Equilibrium and energy. Prob. & Math statistics 1 (1980), 99–108.

    MathSciNet  MATH  Google Scholar 

  4. K.L. CHUNG. Probabilistic approach in potential theory to the equilibrium problem. Ann. Inst. Fourier 23 (1973), 313–322.

    Article  MATH  Google Scholar 

  5. J.N. DARROCH and E. SENETA. On quasi-stationary distributions in absorbing discrete-time finite Markov chains. J. Appl. Prob. 2 (1965), 88–100.

    Article  MathSciNet  MATH  Google Scholar 

  6. R.K. GETOOR and M.J. SHARPE. Last exit times and additive functionals. Ann. Prob. 1 (1973) 550–569.

    Article  MathSciNet  MATH  Google Scholar 

  7. R.K. GETOOR. Markov Processes: Ray Processes and Right Processes Lect. Notes in Math. 446. Springer-Verlag, Berlin-Heidelberg- New york, 1975.

    MATH  Google Scholar 

  8. R.K. GETOOR and J. GLOVER. Markov processes with identical excessive measures. Math Zeitschrift

    Google Scholar 

  9. R.K. GETOOR and J. GLOVER. Riesz decompositions in Markov process theory. Trans Amer. Math Soc. To appear.

    Google Scholar 

  10. J. GLOVER. Topics in probabilistic potential theory. Seminar on stochastic Process 1982, pp. 195–202. Birkhäuser, Boston, 1983.

    Chapter  Google Scholar 

  11. A.C. LAZER. An extremal characterization of the principal eigenvalue of a non-self-adjoint elliptic operator. (1982) preprint.

    Google Scholar 

  12. P.A. MEYER. Note sur l’interprétation des mesures d’équilibre. Seminaire de probabilités VII, pp. 210–216. Lect. Notes in Math 321. Springer-Verlag, Berlin-Heidelberg-New York, 1971.

    Google Scholar 

  13. .S. PORT and C. STONE. Brownian Motion and Classical Potential Theory. Academic Press, New York, 1978.

    MATH  Google Scholar 

  14. .M. REED and B. SIMON. Methods of Modern Mathematical Physics Vol 1. Academic Press, New York, 1972.

    MATH  Google Scholar 

  15. D. REVUZ. Mesures associées aux fonctionnelles additives de Markov I. Trans. Amer. Math. Soc. 148 (1970), 501–531.

    MathSciNet  MATH  Google Scholar 

  16. F. RIESZ and B. .sz-NAGY. Functional Analysis. F. Ungar Pub. Co. New York, 1955.

    Google Scholar 

  17. E. SENETA. Non-negative Matrices and Markav Chains. Springer-Verlag Berlin-Heidelberg-New York, 1981.

    Google Scholar 

  18. E. SENETA. Quasi-stationary distributions and time reversion in genetics. J. Royal Stat. Soc. Ser. B. 28 (1966), 253–277.

    MathSciNet  Google Scholar 

  19. D. STROOCK. On the spectrum of Markov semigroups and the existence of invariant measures. Lect. Notes in Math 923. Springer-Verlag, Berlin-Heidelberg-New york, 1982.

    Google Scholar 

  20. D. SULLIVAN. λ-potential theory. Preprint.

    Google Scholar 

  21. K. YOSIDA. Functional Analysis. Springer-Verlag, Berlin-Heidelberg-New York 1980.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Glover, J. (1986). Quasi-Stationary Distributions, Eigenmeasures, and Eigenfunctions of Markov Processes. In: Çinlar, E., Chung, K.L., Getoor, R.K. (eds) Seminar on Stochastic Processes, 1984. Progress in Probability and Statistics, vol 9. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6745-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6745-1_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6747-5

  • Online ISBN: 978-1-4684-6745-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics