“Numerical Research of Periodic Solution for a Hamiltonian System”

  • E. Gaussens
Part of the Annals of CEREMADE book series (CEREMADE, volume 2)


This paper deals with the following problem: Find approximate solutions of
$$ \left\{ \begin{gathered} \frac{{dy}}{{dt}} = \frac{{\partial H}}{{\partial q}}(y,q) + {{f}_{1}}(t) \hfill \\ \frac{{dq}}{{dt}} = - \frac{{\partial H}}{{\partial y}}(y,q) + {{f}_{2}}(t) \hfill \\ \end{gathered} \right.\quad t \in [0,T] $$
with T pre-assigned, and the boundary constraint:
$$ \left\{ \begin{gathered} y(0)\; = \;y(T)\quad \in \quad {{R}^{n}} \hfill \\ q(0)\; = \;q(T)\quad \in \quad {{R}^{n}} \hfill \\ \end{gathered} \right. $$


Periodic Solution Hamiltonian System Projection Method Boundary Constraint Critical Point Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Clarke–I. Ekeland: “Hamiltonian trajectories having prescribed minimal period”. Comm. Pure and Appi. Math. 33, 1980, p. 103–116.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    F. Clarke - I. Ekeland: “Non linear oscillations and boundary value problem for Hamiltonian system”. To appear in Archive Rat. Mech. Am.Google Scholar
  3. [3]
    I. Ekeland “Non linear oscillations of Hamiltonian system. II”. Advances in Mathematics, Vol. 7A, 1981, p. 345–360.MathSciNetGoogle Scholar
  4. [4]
    I. Ekeland “Non linear oscillations of Hamiltonian system. III”. Bull. Soc. Math. France, 109, 1981, p. 297–330.MathSciNetMATHGoogle Scholar
  5. [5]
    A. Ambrosetti–P. Rabinowitz: “Dual variationnal methods in critical point theory and applications”. J. Funct. Ana. 14 (1973) p. 349–381.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    P. Rabinowitz “Periodic solutions of Hamiltonian systems” Comm. Pure and Appi. Math. 31 (1978) p* 157–184.Google Scholar
  7. [7]
    I. Ekeland “Periodic solutions of Hamiltonian system and a theorem of P. Rabinowitz”. J. Diff. Eq. Vol. 34 n° 3, 1979 pp. 523–534.MathSciNetGoogle Scholar
  8. [8]
    A* Bahri–H, Beresticky: “Existence d’une infinite de solutions périodiques de certains systèmes hamilto-niens en presence d’un terme de contrainte”. C.R. Acad. Sc. Paris tome 292, Série A (1981) 315–318.Google Scholar
  9. [9]
    Arnol’d “Méthodes Mathématiques de la Mécanique classi que”. MIR.Google Scholar
  10. [10]
    Abraham - Marsden: “Foundations of Mechanics”. Benjamin/Gumming.Google Scholar
  11. [11]
    Ferai–Pasta–Ullam: “Studies of non-lineàr problem”. Lectures in Appl. Math. Vol. 15, 1974, p. 143–156.Google Scholar
  12. [12]
    J. Blot “Recherche de solutions périodiques de systèmes Hamiltoniens perturbés par le théorème des fonctions implicites”. Cahier du CEREMADE 8122.Google Scholar
  13. [13]
    J. Blot Thèse de 3e cycle. Paris IX UNIVERSITY (M.D.) (CEREMADE).Google Scholar
  14. [14]
    D. Azé Thèse de 3e cycle. Paris IX UNIVERSITY (M.D.) (CEREMADE).Google Scholar
  15. [15]
    D. Azé - J. Blot: “Les systèmes hamiltoniens et leurs solutions périodiques”, CEDIC éditeur, Paris 1982.Google Scholar
  16. [16]
    I. Ekeland–J.M. Lasry: “On thé number of periodic trajectories for an Hamiltonian flow on a convex energy surface”. Annals of Math. 112 (1980) p. 283–319.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    E. Gaussens “Quelques propriétés topologiques de lfensemble des solutions périodiques pour des systèmes non linéaires”. Cahier du CEREMADE 8101.Google Scholar
  18. [18]
    E. Gaussens “Recherche numérique des solutions périodiques pour des systèmes non linéaires”. Cahier du CEREMADE 8101.Google Scholar
  19. [19]
    E. Gaussens “Periodic solution in the large for non linear differential systems”. To appear in “Numerical functionnal analysis and optimization”.Google Scholar
  20. [20]
    I. Ekeland - R. Temam: “Convex analysis and variationnal problems”. North-Holland ELSEVIER 1980.Google Scholar
  21. [21]
    Rockafellar “Convex analysis. Princeton Univ. Press 1970.Google Scholar
  22. [22]
    Riesj - Nagy “Leçon d’Analyse fonctionnelle”. Gauthiers-Villars.Google Scholar
  23. [23]
    J.L. Lions “Quelques méthodes de résolution des problèmes aux limites non linéaires”. Dunod 1969.Google Scholar
  24. [24]
    J. Cea “Optimisation: Théorie et Algorithme”. Dunod 1971.MATHGoogle Scholar
  25. [25]
    J. Abadie “Non linear programming”, Wiley 1967.Google Scholar
  26. [26]
    Auslender - Brodeaux: “Convergence d’un algorithme de Franck-Wolfe appliqué à un problème de contrôle”. RIRO n° 7, 1968.Google Scholar
  27. [27]
    J.B. Rosen “The gradient projection method for non linear programming”. Part I, SIAÎ1 8, pp. 181–217.Google Scholar

Copyright information

© Birkhäuser Boston, Inc. 1983

Authors and Affiliations

  • E. Gaussens
    • 1

Personalised recommendations