Recent Advances in the Study of the Existence of Periodic Orbits of Hamiltonian Systems

  • Antonio Ambrosetti
Part of the Annals of CEREMADE book series (CEREMADE, volume 2)


In this paper we shall discuss some recent advances in the study of Hamiltonian systems. In view of other expositions in these Proceedings, we shall limit ourselves to considering the existence of periodic solutions on a prescribed energy surface.


Periodic Solution Periodic Orbit Hamiltonian System Minimal Period General Hamiltonian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Liapunov, Ann. Fac. Sci. Toulouse, 2 (1907), 203–474.CrossRefGoogle Scholar
  2. [2]
    A. Weinstein, Inv. Math., 20 (1973), 47–57.MATHCrossRefGoogle Scholar
  3. [3]
    J. Moser, Comm. Pure Appl. Math., 29 (1976), 727–747.MATHGoogle Scholar
  4. [4]
    E. Hopf, Ber Math-Phis. Sachs. Acad. Wiss. Leipzig, 94 (1942), 1–22.Google Scholar
  5. [5]
    J. Alexander and J. Yorke, Amer. J. Math., 100 (1978), 263–292.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    S.N. Chow and J. Mallet-Paret, J. Diff. Eq., 29 (1978), 66–85.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    E.R. Fadell and P.H. Rabinowitz, Inv. math. 45 (1978), 139–174.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    A. Weinstein, Annals of Math., 108 (1978), 507–518.MATHCrossRefGoogle Scholar
  9. [9]
    P.H. Rabinowitz, Comm. Pure Appl. Math., 31 (1978), 157–184.MathSciNetGoogle Scholar
  10. [10]
    I. Ekeland and J.M. Lasry, Annals of Math., 112 (1978), 157–184.MathSciNetGoogle Scholar
  11. [11]
    F. Clarke and I. Ekeland, Comm. Pure Appl. Math., 33 (1980), 103–116.MathSciNetMATHGoogle Scholar
  12. [12]
    A. Ambrosetti and G. Mancini, Math. Annalen. 255 (1981), 405–421.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    G. Mancini, Periodic solutions of Hamiltonian systems having prescribed minimal period. Article in these Proceedings.Google Scholar
  14. [14]
    A. Ambrosetti and P.H. Rabinowitz, Journal Funct. Anal., 14 (1973), 349–381.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    P.H. Rabinowitz, in Nonlinear Evolution Equations, M.G. Crandall Ed., Ac. Press (1978) 225–251.Google Scholar
  16. [16]
    V. Benci and P.H. Rabinowitz, Inv. Math. 62 (1979), 336–352.MathSciNetGoogle Scholar
  17. [17]
    F. Clarke, Periodic solutions to Hamilonian inclusions, to appear J. Diff. Eq.Google Scholar
  18. [18]
    I. Ekeland, Jour. Diff. Eq., 34 (1979), 523–534.MATHCrossRefGoogle Scholar
  19. [19]
    V. Benci, A geometrical index for the group S’ and some appli-cations to the study of periodic solutions of ordinary differential equations, to appear Comm. Pure Appl. Math.Google Scholar
  20. [20]
    A. Ambrosetti and G. Mancini, On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories. To appear Jour. Diff. Eq.Google Scholar
  21. [21]
    Z. Nehair, Acta Math., 105 (1961), 141–175.MathSciNetCrossRefGoogle Scholar
  22. [22]
    C.V. Coffmann, J. Analyse Math., 22 (1969), 391–419.MathSciNetCrossRefGoogle Scholar
  23. [23]
    J.A. Hempel, Ind. Univ. Math., J., 20 (1971), 983–996.MATHCrossRefGoogle Scholar
  24. [24]
    A. Ambrosetti, Atti Acc. Naz. Lincei, 52 (1972), 402–409.Google Scholar
  25. [25]
    A. Ambrosetti, Rend. Sem. Mat. Univ. Padova, 49 (1973), 195–204.MATHGoogle Scholar
  26. [26]
    A. Ambrosetti and G. Mancini, in Recent Contributions to nonlinear Partial Differential Equations, H. Berestycki and H. Brézis (Ed.), Pitman (1981), 24–36.Google Scholar

Copyright information

© Birkhäuser Boston, Inc. 1983

Authors and Affiliations

  • Antonio Ambrosetti
    • 1
  1. 1.International School for Advanced Studies (SISSA)TriesteItaly

Personalised recommendations