Gene Function pp 230-328 | Cite as

Reactions of DNA

  • Robert E. Glass


The bacterial genome encodes about one to two thousand different protein species, the majority of which are likely to be enzymes rather than structural components. Of the numerous cytoplasmic processes carried out by these biological catalysts, those that involve nucleic acid, in particular DNA, are crucial for cellular survival and, in the long term, for preservation of genetic information. Thus, although perturbation of a biosynthetic reaction at the transcriptional or translational level may result in auxotrophy, such an effect is phenotypic (rather than genotypic) since it is compensated by de novo RNA and protein production once the block is removed. When a change occurs at the level of DNA, itself, it is heritable and will be passed on to all progeny cells (unless otherwise repaired). Reactions of DNA are, therefore, limited in the present context to those that directly affect the genetic material — the breaking and making of internucleotide bonds or the modification of DNA nucleotides — and not the passive use of DNA as a template, as in transcription (Chapter 2). These processes, DNA replication, recombination and repair (mutation has been discussed in Chapter 3), have many gene functions in common.


Excision Repair Genetic Element Insertion Sequence Replication Fork Exonuclease Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


DNA Replication

  1. Kornberg, A. (1980) DNA Replication ( Freeman, San Francisco).Google Scholar
  2. Champoux, J.J. (1978) ‘Proteins that affect DNA conformation’, Ann. Rev. Biochem., 47, 449–479.CrossRefGoogle Scholar
  3. Cozzarelli, N.R. (1980) ‘DNA gyrase and supercoiling’, Science, 207, 953–960.CrossRefGoogle Scholar
  4. Geider, K. (1976) ‘Molecular aspects of DNA replication in Escherichia coli systems’, Curr. Topics Microbio!. Immunol., 74, 55–112.Google Scholar
  5. Gross, J.D. (1972) ‘DNA replication in bacteria’, Curr. Topics Microbio!. Immunol., 57, 39–74.CrossRefGoogle Scholar
  6. Lehman, I.R (1974) ‘DNA ligase: Structure, mechanism and function’, Science, 186, 790–797.CrossRefGoogle Scholar
  7. Lehman, I.R. and Uyemura, D.G. (1976) ‘DNA polymerase I: Essential replication enzyme’, Science, 193, 963–969.CrossRefGoogle Scholar
  8. Wechsler, J.A. (1978) ‘The genetics ofE. coli DNA replication’, in I. Molineux and M. Kohiyama (eds.), DNA Synthesis: Present and Future ( Plenum Press, New York ), pp. 49–70.Google Scholar
  9. Widmer, S.H. (1978) ‘DNA replication proteins of Escherichia coli’, Ann. Rev. Biochem., 47, 1163–1191.CrossRefGoogle Scholar
  10. Alberts, B.A. and Sternglanz, R (1977) ‘Recent excitement in the DNA replication problem’, Nature, 269, 655–661.CrossRefGoogle Scholar
  11. Cairns, J. (1963) ‘The chromosome ofEscherichia coli’, Cold Spring HarborSymp. Quant Biol., 28, 43–46.CrossRefGoogle Scholar
  12. Kolter, R. and Helinski, D.R. (1979) ‘Regulation of initiation of DNA replication’, Ann. Rev. Genet, 13, 355–391.CrossRefGoogle Scholar
  13. Ogawa, T. and Okazaki, T. (1980) ‘Discontinuous replication’, Ann. Rev. Biochem., 49, 421–457.CrossRefGoogle Scholar
  14. Tomizawa, J. and Selzer, G. (1979) ‘Initiation of DNA synthesis inEscherichia coli, Ann. Rev. Biochem., 49, 999–1034.CrossRefGoogle Scholar
  15. Zechel, K. (1978) ‘Initiation of DNA synthesis by RNA’, Curr. Topics Microbiol. Immunol., 82, 71–112.CrossRefGoogle Scholar
  16. Pettijohn, D.E. (1976) ‘Prokaryotic DNA in nucleoid structure’, CRC Crit. Rev. Biochem., 4, 175–202.CrossRefGoogle Scholar
  17. Cooper, S. and Helmstetter, C.E. (1968) ‘Chromosome replication and the division cycle of Escherichia coli B/r’, J. MoL Biol., 31, 519–540.CrossRefGoogle Scholar
  18. Donachie, W.D., Jones, N.C. and Teather, R. (1973) ‘The bacterial cell cycle’, Symp. Soc. Gen. Microbiol., 23, 9–44.Google Scholar
  19. Donachie, W.D. (1979) ‘The cell cycle of Escherichia coli’, in J.H. Parish (ed.), Developmental Biology of Prokayotes ( Blackwell, Oxford ), pp. 11–35.Google Scholar
  20. Helmstetter, C.E., Pierucci, O., Weinberger, M., Holmes, M. and Tang, M.-S. (1979) ‘Control of cell division’, in J.R. Sokatch and L.N. Ornston (eds.), The Bacteria, VII: Mechanisms of Adaptation ( Academic Press, New York ), pp. 517–579.Google Scholar
  21. Jacob, F., Brenner, S. and Cuzin, F. (1963) ‘On the regulation of DNA replication in bacteria’, Cold Spring Harbor Symp. Quant. Biot., 28, 329–347.CrossRefGoogle Scholar
  22. Koch, A.L. (1977) ‘Does the initiation of chromosome replication regulate cell division?’, Adv. Microb. PhysioL, 16, 49–98.CrossRefGoogle Scholar
  23. Lark, K.G. (1979) ‘Some aspects of the regulation of DNA replication in Escherichia coli’, in R.F. Goldberger (ed.), Biological Regulation and Development, I: Gene Expression ( Plenum Press, New York ), pp. 201–217.Google Scholar
  24. Pritchard, R.H., Barth, P.T. and Collins, J. (1969) ‘Control of DNA synthesis in bacteria’, Symp. Soc. Gen. Microbiol., 19, 263–298.Google Scholar
  25. Pritchard, R.H. (1978) ‘Control of DNA replication in bacteria’, in I. Molineux and M. Kihiyama (eds.), DNA Synthesis: Present and Future ( Plenum Press, New York ), pp. 1–26.Google Scholar
  26. Cozzarelli, N.R. (1977) ‘The mechanism of action of inhibitors of DNA synthesis’, Ann. Rev. Biochem., 46, 641–668.CrossRefGoogle Scholar
  27. Sarin, P.S. and Gallo, R.C. (eds.) (1980) Inhibitors of DNA and RNA Polymerases ( Pergamon Press, New York ).Google Scholar
  28. Rowbury, R.J. (1977) ‘Bacterial plasmids with particular reference to their replication and transfer properties’, Prog. Biophys. Molec. Biol., 31, 271–317.CrossRefGoogle Scholar
  29. Rownd, R.H. (1978) ‘Plasmid replication’, in I. Molineux and M. Kohiyama (eds.), DNA Synthesis: Present and Future ( Plenum Press, New York ), pp. 751–772.Google Scholar
  30. Staudenbauer, W.L. (1978) ‘Structure and replication of the colicin El plasmid’, Curr. Topics. Microbiol. Immunol., 83, 93–156.CrossRefGoogle Scholar
  31. Denhardt, D.T. and Hours, C. (1978) ‘The present status of OX174 replication in vivo’, in I. Molineux and M. Kohiyama (eds.), DNA Synthesis: Present and Future ( Plenum Press, New York ), pp. 693–704.Google Scholar
  32. Hurwitz, J. (1979) ‘Analysis of in vitro replication of different DNAs’, CRC Crit Rev. Biochem., 7, 45–74.CrossRefGoogle Scholar
  33. Kornberg, A. (1979) ‘The enzymatic replication of DNA’, CRC Crit Rev. Biochem., 7, 23–43.CrossRefGoogle Scholar

Genetic Recombination

  1. Clark, A.J. (1971) ‘Toward a metabolic interpretation of genetic recombination of E. coli and its phages’, Ann. Rev. Microbiol., 25, 437–464.CrossRefGoogle Scholar
  2. Eisenstark, A. (1977) ‘Genetic recombination in bacteria’, Ann. Rev. Genet, 11, 369–396.CrossRefGoogle Scholar
  3. Gudas, L.J. and Pardee, A.B. (1975) ‘Model for regulation of Escherichia coli DNA repair functions’, Proc. Nat. Acad. Sci. USA, 72, 2330–2334.CrossRefGoogle Scholar
  4. Clark, A.J. (1973) ‘Recombinant deficient mutants ofE. coli and otherbacteria’, Ann. Rev. Genet, 7, 67–86.CrossRefGoogle Scholar
  5. Chipchase, M. (1976) ‘Recombination by strand assimilation and strand crossover’, J. Theor. Biol., 57, 249–279.CrossRefGoogle Scholar
  6. Fox, M.S. (1978) ‘Some features of genetic recombination in prokaryotes’, Ann. Rev. Genet., 12, 47–68.CrossRefGoogle Scholar
  7. Hotchkiss, RD. (1974) ‘Models of genetic recombination’, Ann. Rev. Microbiol., 28, 445–468.CrossRefGoogle Scholar
  8. Low, K.B. and Porter, D.D. (1978) ‘Modes of gene transfer and recombination in bacteria’, Ann. Rev. Genet., 12, 249–287.CrossRefGoogle Scholar
  9. Radding, C.M. (1978) ‘Genetic recombination: Strand transfer and mismatch repair’, Ann. Rev. Biochem., 47, 847–880.CrossRefGoogle Scholar
  10. Stadler, D.R. (1973) ‘The mechanism of intragenic recombination’, Ann. Rev. Genet., 7, 113–127.CrossRefGoogle Scholar
  11. Stahl, F.W. (1979) ‘Special sites in generalised recombination’, Ann. Rev. Genet., 13, 7–24.CrossRefGoogle Scholar
  12. Stahl, F.W. (1979) Genetic Recombination: Thinking About it in Phage and Fungi ( Freeman, San Francisco).Google Scholar
  13. Bukhari, A.I. (1976) ‘Bacteriophage Mu as a transposition element’, Ann. Rev. Genet., 10, 389–412.CrossRefGoogle Scholar
  14. Bukhari, A.I., Shapiro, J.A. and Adhya, S.L. (eds.) (1977) DNA Insertion Elements, Plasmids and Episomes ( Cold Spring Harbor Laboratory, New York ).Google Scholar
  15. Calos, M.P. and Miller, J.H. (1980) ‘Transposable elements’, Cell, 20, 579–595.CrossRefGoogle Scholar
  16. Grindley, N.D.F. and Sherratt, D.J. (1978) ‘Sequence analysis at IS1 insertion sites: Models for transposition’, Cold Spring Harbor Symp. Quant Biol., 43, 1257–1261.CrossRefGoogle Scholar
  17. Kleckner, N. (1977) ‘Translocatable elements in prokaryotes’, Cell, 11, 11–23.CrossRefGoogle Scholar
  18. Schwesinger, M. (1977) ‘Additive recombination in bacteria’, Bacteriol. Rev., 41, 872–902.Google Scholar
  19. Shapiro, J.A. (1979) ‘Molecular models for the transposition and replication of bacteriophage Mu and other transposable elements’, Proc. Nat. Acad. Sci. USA, 76, 1933–1937.CrossRefGoogle Scholar
  20. Starlinger, P. and Saedler, H. (1976) ‘IS-Elements in microorganisms’, Curr. Topics MicrobioL ImmunoL, 75, 112–152.Google Scholar
  21. Starlinger, P. (1977) ‘DNA rearrangements in prokaryotes’, Ann. Rev. Genet, 11, 103–126.CrossRefGoogle Scholar
  22. Starlinger, P. (1980) ‘Transposition’, Plasmid, 3, 241–259.CrossRefGoogle Scholar
  23. Weisberg, R.A. and Adhya, S. (1977) ‘Illegitimate recombination in bacteria and bacteriophage’, Ann. Rev. Genet., 11, 451–473.CrossRefGoogle Scholar
  24. Anderson, R.P. and Roth, J.R. (1977) ‘Tandem genetic duplications in phage and bacteria’, Ann. Rev. Microbiol., 31, 473–505.CrossRefGoogle Scholar
  25. Franklin, N.C. (1971) ‘Illegitimate recombination’, in A.D. Hershey (ed.), The Bacteriophage Lambda ( Cold Spring Harbor Laboratory, New York ), pp. 175–194.Google Scholar
  26. Cohen, S.N. (1976) ‘Transposable genetic elements and plasmid evolution’, Nature, 263, 731–738.CrossRefGoogle Scholar
  27. Nevers, P. and Saedler, H. (1977) ‘Transposable genetic elements as agents of gene instability and chromosomal rearrangements’, Nature, 268, 109–115.CrossRefGoogle Scholar
  28. Reanney, D.C. (1977) ‘Genetic engineering as an adaptive strategy’, Brookhaven Symp., 29, 248–271.Google Scholar
  29. Reanney, D.C. (1978) ‘Coupled evolution: Adaptive interactions among the genomes ofplasmids, viruses and cells’, Int. Rev. Cytol., suppl. 8, 1–68.CrossRefGoogle Scholar
  30. Riley, M. and Anilionis, A. (1978) ‘Evolution of the bacterial genome’, Ann. Rev. Microbiol, 32, 519–560.CrossRefGoogle Scholar
  31. Sanderson, K.E. (1976) ‘Genetic relatedness in the family Enterobacteriaceae’, Ann. Rev. Microbiol, 30, 327–349.CrossRefGoogle Scholar
  32. Sparrow, A.H. and Nauman, A.F. (1976) ‘Evolution of genome size by DNA doublings’, Science, 192, 524–529.CrossRefGoogle Scholar

DNA Repair

  1. Friedberg, E.C. (1975) ‘Dark repair in bacteriophage systems’, in P.C. Hanawalt and R.B. Setlow (eds.), Molecular Mechanisms for DNA Repair ( Plenum Press, New York ), pp. 125–133.Google Scholar
  2. Lindahl, T. (1979) ‘DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair’, Prog. Nucl. Acid Res. Molec. Biol, 22, 135–192.CrossRefGoogle Scholar
  3. Bernstein, C. (1981) ‘Deoxyribonucleic acid repair in bacteriophage’, Microbiol. Rev., 45, 72–98.Google Scholar
  4. Hanawalt, P.C., Cooper, P.K., Ganesan, A.K. and Smith, C.A. (1979) ‘DNA repair in bacteria and mammalian cells’, Ann. Rev. Biochem., 48, 783–836.CrossRefGoogle Scholar
  5. Grossman, L., Braun, A., Feldberg, R. and Mahler, I. (1975) ‘Enzymatic repairofDNA’, Ann. Rev. Biochem., 44, 19–43.CrossRefGoogle Scholar
  6. Lehman, A.R. and Bridges, B.A. (1977) ‘DNA repair’, in P.N. Campbell and G.D. Greville (eds.), Essays in Biochemistry, 13 ( Academic Press, London ), pp. 71–119.Google Scholar
  7. Moseley, B.E.B. and Williams, E. (1977) ‘Repair of damaged DNA in bacteria’, Adv. Microbiol. Physiol., 16, 99–156.CrossRefGoogle Scholar
  8. Sutherland, B.M. (1978) ‘Photoreactivation in mammalian cells’, Int Rev. Cytol., suppl. 8, 301–334.CrossRefGoogle Scholar
  9. Witkin, E.M. (1976) ‘Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli’, Bacteriol. Rev., 40, 869–907.Google Scholar

Copyright information

© Robert E. Glass 1982

Authors and Affiliations

  • Robert E. Glass
    • 1
  1. 1.NottinghamUK

Personalised recommendations