Gene Function pp 110-155 | Cite as


  • Robert E. Glass


The genetic material of an organism (be it DNA or RNA1) may be damaged during growth by factors in its external or internal environment. A heritable change that permanently affects the chromosome, termed a mutation, results in an altered, mutant organism. Mutations in a particular gene give rise to a number of different alleles of that gene; these homologues may differ in one or more nucleotide pairs. The selective advantage that any one allele imparts to the mutant strain allows its preferential survival. Non-lethal chromosomal lesions (see below) are the source of genetic variation and, thus, provide the basis for evolution.


Frameshift Mutation Genetic Lesion Base Analogue Nonsense Suppression Nonsense Codon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Mutation Classification

  1. Hayes, W. (1968) The Genetics of Bacteria and their Viruses, 2nd edn ( Blackwell, Oxford).Google Scholar


  1. Anderson, R.P. and Roth, J.R. (1977) ‘Tandem genetic duplications in phage and bacteria’, Ann. Rev. Microbiol., 31, 473–505.CrossRefGoogle Scholar
  2. Cox, E.C. (1976) ‘Bacterial mutator genes and the control of spontaneous mutation’, Ann. Rev. Genet., 10, 135–156.CrossRefGoogle Scholar
  3. Starlinger, P. (1977) ‘DNA rearrangements in prokaryotes’, Ann. Rev. Genet., 11, 103–126.CrossRefGoogle Scholar
  4. Weisberg, R.A. and Adhya, S. (1977) ‘Illegitimate recombination in bacteria and bacteriophage’, Ann. Rev. Genet., 11, 451–473.CrossRefGoogle Scholar
  5. Ames, B.N., McCann, J. and Yamasaki, E. (1975) ‘Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test’, Mut. Res., 31, 347–364.Google Scholar
  6. Ames, B. and Hooper, K. (1978) ‘Does carcinogenic potency correlate with mutagenic potency in the Ames assay?’, Nature, 274, 19–22.CrossRefGoogle Scholar
  7. Bridges, B.A. (1976) ‘Short term screening tests for carcinogens’, Nature, 261, 195–200.CrossRefGoogle Scholar
  8. Drake, J.W. and Baltz, R.H. (1976) ‘The biochemistry of mutagenesis’, Ann. Rev. Biochem., 45, 11–37.CrossRefGoogle Scholar
  9. Nagao, M., Sugimura, T. and Matsushima, T. (1978) ‘Environmental mutagens and carcinogens’, Ann. Rev. Genet., 12, 117–159.CrossRefGoogle Scholar
  10. Roth, J.R. (1974) ‘Frameshift mutations’, Ann. Rev. Genet., 8, 319–346.CrossRefGoogle Scholar
  11. Streisinger, G., Okada, Y., Emrich, J., Newton, J., Tsugita, A., Terzaghi, E. and Inouye, M. (1966) ‘Frameshift mutations and the genetic code’, Cold Spring Harbor Symp. Quant. Biol., 31, 77–84.CrossRefGoogle Scholar
  12. Witkin, E.M. (1976) ‘Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli’, Bacteriol. Rev., 40, 869–907.Google Scholar
  13. Zimmermann, F.K. (1977) ‘Genetic effects of nitrous acid’, Mut. Res., 39, 127–148.Google Scholar
  14. Coulondre, C., Miller, J.H., Farabaugh, P.J. and Gilbert, W. (1978) ‘Molecular basis of base substitution hotspots in Escherichia Coli’, Nature, 274, 775–780.CrossRefGoogle Scholar
  15. Farabaugh, P.J. and Miller, J.H. (1978) ‘Genetic studies of the lac repressor, VII: on the molecular nature of spontaneous hotspots in the lad gene of Escherichia coli’, J. Mol. Biol., 126, 847–863.CrossRefGoogle Scholar
  16. Hopwood, D.A. (1970) ‘The isolation of mutants’, in J.R. Norris and D.W. Ribbons (eds.), Methods in Microbiology, 3A ( Academic Press, London ), pp. 363–433.Google Scholar
  17. Lederberg, J. and Lederberg, E.M. (1952) ‘Replica-plating and indirect selection of bacterial mutants’, J. Bacteriol., 63, 399–406.Google Scholar
  18. Luria, S.E. and Delbrück, M. (1943) ‘Mutations of bacteria from virus sensitivity to virus resistance’, Genetics, 28, 491–511.Google Scholar
  19. Miller, J.H. (1972) Experiments in Molecular Genetics ( Cold Spring Harbor Laboratory, New York).Google Scholar
  20. Tomasz, A. (1979) ‘The mechanism of the irreversible antimicrobial effects of penicillins: How the beta-lactam antiobiotics kill and lyse bacteria’. Ann. Rev. MicrobioL, 33, 113–137.CrossRefGoogle Scholar


  1. Crick, F.H.C., Barnett, L., Brenner, S. and Watts-Tobin, R.J. (1961) ‘Triplet nature of the code’, Nature, 192, 1227–1232.CrossRefGoogle Scholar
  2. Gorini, L. (1974) ‘Streptomycin and misreading of the genetic code’, in M. Nomura, A. Tissieres and P. Lengyel (eds.),Ribosomes ( Cold Spring Harbor Laboratory, New York ), pp. 791–803.Google Scholar
  3. Hartman, P.E. and Roth, J.R. (1973) ‘Mechanisms of suppression’ Adv. Genet., 17, 1–105.CrossRefGoogle Scholar
  4. Hill, C.W. (1975) ‘Informational suppression of missense mutations’, Cell, 6, 419–427.CrossRefGoogle Scholar
  5. Ninio, J. (1974) ‘A semi-quantitative treatment of missense and nonsense suppression in the strA and ram ribosomal mutants of Escherichia coli: Evaluation of some molecular parameters of translation in vivo’, J. Mol. Biol., 84, 297–313.CrossRefGoogle Scholar
  6. Seege, D.A. and Säll, D.G. (1979) ‘Suppression’, in R.F. Goldberger (ed.), B iological Regulation and Development I: Gene Expression ( Plenum Press, New York ), pp. 433–485.Google Scholar
  7. Smith, J.D. (1979) ‘Suppressor tRNAs in prokaryotes’, in J.E. Celis and J.D. Smith (eds.), Nonsense Mutations and tRNA Suppressors ( Academic Press, London ), pp. 109–125.Google Scholar

Copyright information

© Robert E. Glass 1982

Authors and Affiliations

  • Robert E. Glass
    • 1
  1. 1.NottinghamUK

Personalised recommendations