Advertisement

RNA and Protein Production

  • Robert E. Glass

Abstract

Cellular processes are not carried out directly by the hereditary material. The main agents required for growth are the biological catalysts, enzymes, protein molecules that carry, in some instances, organic prosthetic groups. In addition, non-enzymatic proteins have a major structural role. Many hundreds, perhaps as many as one to two thousand different proteins in the case of E. coli, one of the simplest of unicellular organisms, are necessary for growth. Thus, the genetic material of an organism contains the information necessary for survival — it is the ‘programme’ for cellular growth — without being directly involved. How is this information realised? Gene expression consists of two major stages, transcription and translation.

Keywords

Peptide Bond Formation Peptidyl Transferase Centre Nonsense Suppression Transcriptional Termination Ribonucleoside Triphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Crick, F.H.C. (1970) ‘Central dogma of molecular biology’, Nature, 227, 561–563.CrossRefGoogle Scholar
  2. Jacob, F. and Monod, J. (1961) ‘Genetic regulatory mechanisms in the synthesis of proteins’, J. Mol. Biol., 3, 318–356.CrossRefGoogle Scholar

DNA Transcription

  1. Chamberlin, M.J. (1976) ‘RNA polymerase — an overview’, in R. Losick and M. Chamberlin (eds.), RNA Polymerase ( Cold Spring Harbor Laboratory, New York ), pp. 17–67.Google Scholar
  2. Lathe, R. (1978) ‘RNA polymerase in Escherichia colis Curr. Topics Microbiol. Immunol., 83, 37–92.Google Scholar

The Elements of Transcription

  1. Bautz, E.K.F. (1976) ‘Bacteriophage-induced DNA-dependent RNA polymerase’, in R. Losick and M. Chamberlin (eds.), RNA Polymerase ( Cold Spring Harbor Laboratory, New York ), pp. 273–284.Google Scholar
  2. Burgess, R.R., Travers, A.A., Dunn, J.J. and Bautz, E.K.F. (1969) ‘Factor stimulating transcription by RNA polymerase’, Nature, 221, 43–46.CrossRefGoogle Scholar
  3. Burgess, R.R. (1976) ‘Purification and physical properties ofE. coli RNA polymerase’, in R. Losick and M. Chamberlin (eds.), RNA Polymerase ( Cold Spring Harbor Laboratory, New York ), pp. 69–100.Google Scholar
  4. Krakow, J.S., Rhodes, G. and Jovin, T.M. (1976) ‘RNA polymerase: Catalytic mechanisms and inhibitors’, in R. Losick and M. Chamberlin (eds.), RNA Polymerase ( Cold Spring Harbor Laboratory, New York ), pp. 127–157.Google Scholar
  5. Yura, T. and Ishihama, A. (1979) ‘Genetics of bacterial RNA polymerases’,Ann. Rev. Genet., 13, 59–97.Google Scholar
  6. Zillig, W., Palm, P. and Heil, A. (1976) ‘Function and reassembly of subunits of DNA-dependent RNA polymerase’, in R. Losick and M. Chamberlin (eds.), RNA Polymerase ( Cold Spring Harbor Laboratory, New York ), pp. 101–125.Google Scholar

The Mechanism of Transcription

  1. Adhya, S. and Gottesman, M. (1978) ‘Control of transcription termination’, Ann. Rev. Biochem., 47, 967–996.CrossRefGoogle Scholar
  2. Chamberlin, M.J. (1976) ‘The selectivity of transcription’, Ann. Rev. Biochem., 43, 721–775.CrossRefGoogle Scholar
  3. Doi, R.H. (1977) ‘Role of ribonucleic acid polymerase in gene selection in prokaryotes’, Bacteriol. Rev., 41, 568–594.Google Scholar
  4. Pribnow, D. (1979) ‘Genetic control signals in DNA’, in R.F. Goldberger (ed.), Biological Regulation and Development I: Gene Expression ( Plenum Press, New York ), pp. 219–277.Google Scholar
  5. Rosenberg, M. and Court, D. (1979) ‘Regulatory sequences involved in the promotion and termination of RNA transcription’, Ann. Rev. Genet., 13, 319–353.CrossRefGoogle Scholar
  6. Siebenlist, S., Simpson, R.B. and Gilbert, W. (1980) ‘E. coli RNA polymerase interacts homologously with two different promoters’, Cell, 20, 269–281.Google Scholar
  7. Apirion, D. (1973) ‘Degradation of RNA inEscherichia coli: A hypothesis’, Molec. Gen. Genet., 122, 313–322.CrossRefGoogle Scholar
  8. Gallant, J.A. (1979) ‘Stringent control in E. coli’, Ann. Rev. Genet., 13, 393–415.Google Scholar
  9. MaalOe, O. (1979) ‘Regulation of the protein-synthesising machinery — Ribosomes, tRNA, factors, and soon’, in R.F. Goldberger (ed.)1 Biological Regulation and Development, I: Gene Expression ( Plenum Press, New York ), pp. 487–542.Google Scholar
  10. Nierlich, D.P. (1978) ‘Regulation of bacterial growth, RNA and protein synthesis’, Ann. Rev. MicrobioL, 32, 393–432.CrossRefGoogle Scholar
  11. Perry, R.P. (1976) ‘Processing of RNA’, Ann. Rev. Biochem., 45, 605–629.CrossRefGoogle Scholar
  12. Goldberg, I.H. and Friedman, P.A. (1971) ‘Antibiotics and nucleic acids’, A nn. Rev. Biochem., 40, 775–810.Google Scholar
  13. Kersten, H. and Kersten, W. (1974) Inhibitors of Nucleic Acid Synthesis: Biophysical and Biochemical Aspects ( Springer-Verlag, New York).CrossRefGoogle Scholar
  14. Sarin, P.S. and Gallo, R.C. (eds.) (1980) Inhibitors of DNA and RNA Polymerases ( Pergamon Press, New York ).Google Scholar
  15. Suhadolnik, R.J. (1979) ‘Naturally occurring nucleoside and nucleotide antibiotics’, Prog. NucL Acid. Res. Molec. Biol., 22, 193–291.CrossRefGoogle Scholar
  16. Werhli, W. (1977) ‘Ansamycins: Chemistry, biosynthesis and biological activity’, Topics Curr. Chem., 72, 21–49.CrossRefGoogle Scholar

RNA Translation

  1. Chambliss, G., Craven, G.R., Davies, J., Davis, K., Kahan, L. and Nomura, M. (eds.) (1980) Ribosomes: Structure, Function and Genetics ( University Park Press, Baltimore ).Google Scholar
  2. Grantham, R., Gautier, C., Gouy, M., Jacobzone, M. and Mercier, R. (1981) ‘Codon catalog usage is a genome strategy modulated for gene expressivity’, Nucl. Acids Res., 9, r43-r74. (This list is updated periodically.)Google Scholar
  3. Jukes, T.H. (1978) ‘The amino acid code’,Adv. Enzymol., 47, 375–432.Google Scholar
  4. Umbarger, H.E. (1978) ‘Amino acid biosynthesis and its regulation’,A nn. Rev. Biochem., 47, 533–606.Google Scholar
  5. Yeas, M. (1969) The Biological Code ( North-Holland, Amsterdam).Google Scholar
  6. Altman, S. (1978) ‘Biosynthesis of tRNA’ in S. Altman (ed.), Transfer RNA ( The MIT Press, Cambridge, MA ), pp. 49–77.Google Scholar
  7. Barrell, B.G. and Clark, B.F.C. (1974)Handbook of Nucleic Acid Sequences (Joynson-Bruvvers, Oxford).Google Scholar
  8. Celis, J.E. (1980) ‘Collection of mutant tRNA sequences’, Nucl. Acids Res., 8, r23 - r29.CrossRefGoogle Scholar
  9. Clark, B.F.C. (1979) ‘Structure and function of tRNA’ in J.E. Celis and J.D. Smith (eds.), Nonsense Mutations and tRNA Suppressors ( Academic Press, London ), pp. 1–46.Google Scholar
  10. Crick, F.H.C. (1966) ‘Codon-anticodon pairing: The wobble hypothesis’, J. Mol. Biol., 19, 548–555.CrossRefGoogle Scholar
  11. Feldman, M. Ya. (1978) ‘Minor components in transfer RNA: the location-function relationship’, Prog. Biophys. Molec. BioL, 32, 83–102.CrossRefGoogle Scholar
  12. Gauss, D.H. and Sprinzl, M. (1981) ‘Compilation of tRNA sequences’, Nucl. Acids Res., 9, rl-r23. (An up-to-date collection of tRNA sequences is published each year by NAR.)Google Scholar
  13. Goddard, J.P. (1977) ‘The structures and functions of transfer RNA’, Prog. Biophys. Molec. Biol., 32, 233–308.Google Scholar
  14. Kim, S.-H. (1978) ‘Three-dimensional structure of transfer RNA and its functional implications’, in A. Meister (ed.),Advances in Enzymology and Related Areas ofMolecularBiology, 46 ( Wiley, New York ), pp. 279–315.Google Scholar
  15. Nishimura, S. (1978) ‘Modified nucleosides and isoaccepting tRNA’, in S. Altman (ed.), Transfer RNA ( The MIT Press, Cambridge, MA ), pp. 168–195.Google Scholar
  16. Schimmel, P.R. and Soll, D. (1979) ‘Aminoacyl-tRNA synthetases: General features and recognition of transfer RNAs’, Ann. Rev. Biochem., 48, 601–648.Google Scholar
  17. Brimacombe, R., Stöffler, G. and Wittmann, H.G. (1978) ‘Ribosome structure’, Ann. Rev. Biochem., 47, 217–249.CrossRefGoogle Scholar
  18. Brosius, J., Palmer, M.L., Kennedy, P.J. and Noller, H.F. (1978) ‘Complete nucleotide sequence of a 16S ribosomal gene from Escherichia coli’, Proc. Nat. Acad. Sci. USA, 75, 4801–4805.Google Scholar
  19. Brosius, J., Dull, T.J. and Noller, H.F. (1980) ‘Complete nucleotide sequence of a 28S ribosomal RNA gene from Escherichia colis Proc. Nat. Acad. ScL USA, 77, 201–204.Google Scholar
  20. Erdman, V.A. (1976) ‘Structure and function of 5S and 5.8S RNA’,Prog. NucL Acid Res. Molec. BioL, 18, 45–90.Google Scholar
  21. Feltner, P. (1974) Structure of the 16S and 23S ribosomal RNAs’, in M. Nomura, A. Tissières and P. Lengyel (eds.), Ribosomes ( Cold Spring Harbor Laboratory, New York ), pp. 169–191.Google Scholar
  22. Stöffler, G. and Wittmann, H.G. (1977) ‘Primary structure and three-dimensional arrangement of proteins within theEscherichia coli ribosome’, in H. Weissbach and S. Pestka (eds.), Molecular Mechanisms of Protein Biosynthesis ( Academic Press, New York ), pp. 117–202.Google Scholar

The Mechanism of Translation

  1. Bermek, E. (1978) ‘Mechanisms in polypeptide chain elongation on ribosomes’, Prog. Nucl. Acid Res. Molec. BioL, 21, 63–100.CrossRefGoogle Scholar
  2. Caskey, C.T. (1977) ‘Peptide chain termination’, in H. Weissbach and S. Pestka(eds.), Molecular Mechanisms of Protein Biosynthesis ( Academic Press, New York ), pp. 443–465.Google Scholar
  3. Grunberg-Manago, M., Buckingham, R.H., Cooperman, B.S. and Hershey, J.W.B. (1978) ‘Structure and function of the translation machinery’, Symp. Soc. Gen. Microbiol., 28, 27–110.Google Scholar
  4. Pongs, O. (1978) ‘Transfer RNA function in protein synthesis: Ribosome (A-sites and P-sites) and mRNA interactions’ in S. Altman (ed.), Transfer RNA ( The MIT Press, Cambridge, MA ), pp. 78–104.Google Scholar
  5. Steitz, J.A. (1979) ‘Genetic signals and nucleotide sequences in messenger RNA’, in R.F. Goldberger (ed.), Biological Regulation and Development, I: Gene Expression ( Plenum Press, New York ), pp. 349–399.Google Scholar
  6. Goldberg, A.L. and Dice, J.F. (1974) ‘Intracellular protein degradation in mammalian and bacterial cells’, Ann. Rev. Biochem., 43, 835–869.CrossRefGoogle Scholar
  7. Goldberg, A.L. and St. John, A.C. (1976) Intracellular protein degradation in mammalian and bacterial cells: Part 2’, Ann. Rev. Biochem., 45, 747–803.Google Scholar
  8. Hershko, A. and Fry, M. (1975) ‘Post-translational cleavage of polypeptide chains: Role in assembly’, Ann. Rev. Biochem., 44, 775–797.CrossRefGoogle Scholar
  9. Mount, D.W. (1980) ‘The genetics of protein degradation in bacteria’, Ann. Rev. Genet., 14, 279–319.CrossRefGoogle Scholar
  10. Lodish, H.F. (1976) ‘Translational control of protein synthesis’, Ann. Rev. Biochem., 45, 39–72.CrossRefGoogle Scholar
  11. Weissman, C. (1974) ‘The making of a phage’, FEBS Letts., 40S, 10–18.CrossRefGoogle Scholar
  12. Pestka, S. (1977) ‘Inhibitors of protein biosynthesis’, in H. Weissbach and S. Pestka (eds.), Molecular Mechanisms of Protein Biosynthesis ( Academic Press, New York ), pp. 467–553.Google Scholar
  13. Suhadolnik, RJ. (1979) ‘Naturally occurring nucleoside and nucleotide antibiotics’, Prog. Nucl. Acid Res. Molec. BioL, 22, 193–291.CrossRefGoogle Scholar
  14. Vazquez,’ D. (1979) Inhibitors of Protein Biosynthesis ( Springer-Verlag, Berlin).Google Scholar

Copyright information

© Robert E. Glass 1982

Authors and Affiliations

  • Robert E. Glass
    • 1
  1. 1.NottinghamUK

Personalised recommendations