The Bacterial Cell

  • Robert E. Glass


What is a bacterium? Of the multitude of different cellular organisms present on our earth, all can be conveniently divided into two main groups: eukaryotes, those that carry their genetic material physically retained within a membrane, separate from the cytosol; and prokaryotes, those that lack a distinct nuclear membrane. Bacteria are microscopic, predominantly unicellular species, ubiquitous in nature, belonging to this latter class. They come in many shapes and sizes: spherical, rod-shaped (straight or curved); some form a mycelium. They have in common the ability to divide asexually by fission (certain species, such as Bacillus subtilis, also survive by the generation of spores that are aerially dispersed).


Bacterial Cell Genetic Material Cell Envelope Bacterial Chromosome Major Outer Membrane Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brill, W.J. (1979) ‘Nitrogen Fixation’ in J.R. Sokatch and L.N. Ornston (eds.). The Bacteria, VII: Mechanisms of Adaptation ( Academic Press, New York ), pp. 85–109.Google Scholar
  2. Buchanan, R.E. and Gibbons, N.E., (eds.) (1974) Bergev’s Manual ofDeterminative Bacteriology, 8th edn ( The Williams and Wilkins Co., Baltimore ).Google Scholar
  3. Chakrabarty, A.M. (1976) ‘Plasmids in Pseudomonas’, Ann. Rev. Genet., 10, 7–30.CrossRefGoogle Scholar
  4. Doi, R.H. (1977) ‘Genetic control of sporulation’, Ann. Rev. Genet., 11, 29–48.CrossRefGoogle Scholar
  5. Holloway, B.W., Krishnapillai, V. and Morgan, A.F. (1979) ‘Chromosomal genetics of Pseudomottos’, Microbiol. Rev., 43, 73–102.Google Scholar
  6. Hopwood, D.A., Chater. K.F., Dowding, J.E. and Vivian, A. (1973) ‘Advances in Streptomyces coelicolor genetics’, Bacteriol. Rev., 37, 371–405.Google Scholar
  7. Hopwood, D.A. and Merrick, M.J. (1977) ‘Genetics of antibiotic production’, Bacteriol. Rev., 41, 595–635.Google Scholar
  8. Levinthal, M. (1974) ‘Bacterial genetics excluding E. coli’, Ann. Rev. Microbiol, 28, 219–230.CrossRefGoogle Scholar
  9. Lowbury, E.J.L. (1975) ‘Ecological importance of Pseudomonas aeruginosa: medical aspects’ in P.H. Clarke and M.H. Richmond (eds.), Genetics and Biochemistry of Pseudomonas ( John Wiley, New York ), pp. 37–65.Google Scholar
  10. Sanderson, K.E. (1976) ‘Genetic relatedness in the family Enterobacteriacea’, Ann. Rev. MicrobioL, 30, 327–349.CrossRefGoogle Scholar
  11. Sanderson, K.E. and Hartman, P.E. (1978)’Linkage map of Salmonella typhimurium, edition V’, Microbiol. Rev., 42, 471–519.Google Scholar
  12. Schmidt, E.L. (1979) ‘Initiation of plant root-microbe interactions’, Ann. Rev. Microbiol, 33, 355–376.CrossRefGoogle Scholar

The Nature of the Genetic Material

  1. Olby, R. (1974) The Path to the Double Helix ( Macmillan, London).Google Scholar
  2. Sundaralingam, M. (1975)’Principles governing nucleic acid and polynucleotide conformations’ in M. Sundaralingam and S.T. Rao (eds.), Structure and Conformation of Nucleic Acids and Protein-Nucleic Acid Interactions (University Park Press, Baltimore), pp. 487–524.Google Scholar
  3. Thomas, C.A. (1967) ‘The rule of the ring’, J. Cell. Physiol, 70, suppl. 1, 13–34.CrossRefGoogle Scholar
  4. Watson, J.D. (1968) The Double Helix ( Weidenfeld and Nicolson, London).Google Scholar
  5. Watson, J.D. and Crick, F.H.C. (1953) ‘Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid’, Nature, 171, 737–738.CrossRefGoogle Scholar
  6. see relevant sectionGoogle Scholar
  7. Demerec, M., Adelberg, E.A., Clark, A.J. and Hartman, P.E. (1966) ‘A proposal for a uniform nomenclature in bacterial genetics’, Genetics, 54, 61–76.Google Scholar

Cell Composition

  1. Braun, V. (1975) ‘Covalent lipoprotein from the outer membrane of Escherichia coli’, Biochim. Biophys. Acta, 415, 335–377.Google Scholar
  2. Braun, V. (1978) ’ Structure function relationship of the Gram-negative bacterial cell envelope’,Symp. Soc. Gen. Microbiol., 28, 111–138.Google Scholar
  3. Costerton, J.W. (1979) ‘The role of electron microscopy in the elucidation of bacterial structure and function’, Ann. Rev. Microbiol, 33, 459–479.CrossRefGoogle Scholar
  4. Croonan, J.E. (1978) ‘Molecular biology of bacterial membrane lipids’ Ann. Rev. Biochem., 47, 163–189.CrossRefGoogle Scholar
  5. Davis, B.D. and Tai, P.-C. (1980) ‘The mechanism of protein secretion across membranes’, Nature, 283, 433–438.CrossRefGoogle Scholar
  6. DiRienzo, J.M., Nakamura, K. and Inouye, M. (1978) ‘The outer membrane proteins of Gramnegative bacteria: biosynthesis, assembly, and functions’, Ann. Rev. Biochem., 47, 481–532.CrossRefGoogle Scholar
  7. Inouye, M. (ed.) (1979) Bacterial Outer Membranes: Biogenesis and Functions ( John Wiley, London ).Google Scholar
  8. Neilands, J.B. (1978) ‘Transport functions of the outer membrane of enteric bacteria’, Horizons Biochem. Biophys., 5, 65–98.Google Scholar
  9. Orskov, I., Orskov, F., Jann, B. and Jann, K. (1977) ‘Serology, chemistry, and genetics of O and K antigens of Escherichia colis’, Microbiol. Rev., 41, 667–710.Google Scholar
  10. Raetz, C.R.H. (1978) ‘Enzymology, genetics and regulation of membrane phospholipid synthesis in Escherichia coli’, Microbiol Rev., 42, 614–659.Google Scholar
  11. Saier, M.H. (1979) ‘The role of the cell surface in regulating the internal membrane’, in J.R. Sokatch and L.N. Ornston (eds.), The Bacteria, VII: Mechanisms ofAdaptation ( Academic Press, New York ), pp. 167–227.Google Scholar
  12. Tipper, D.J. and Wright, A. (1979) ‘The structure and biosynthesis of bacterial cell walls’, in J.R. Sokatch and L.N. Ornston (eds.), The Bacteria, VII: Mechanisms ofAdaptation ( Academic Press, New York ), pp. 291–426.Google Scholar
  13. Tonn, S.J. and Gander, J.E. (1979) ‘Biosynthesis of polysaccharides by prokaryotes’, Ann. Rev. Microbiol, 33, 169–199.CrossRefGoogle Scholar
  14. Wright, A. and Tipper, D.J. (1979) ‘The outer membrane of Gram-negative bacteria’, in J.R. Sokatch and L.N. Ornston (eds.), The Bacteria, VII: Mechanisms of Adaptation ( Academic Press, New York ), pp. 427–485.Google Scholar
  15. Hazelbauer, G.L. and Parkinson, J.S. (1977) ‘Bacterial chemotaxis’, in J.L. Reissig (ed.), Receptors and Recognition. Microbial Interactions ( Chapman and Hall, London ), pp. 59–98.Google Scholar
  16. Iinio, T. (1977)’Genetics of structure, function of bacterial flagella’, Ann. Rev. Genet., 11, 161–182.CrossRefGoogle Scholar
  17. Koshland, D.E. (1979) ‘Bacterial chemotaxis’ in J.R. Sokatch and L.N. Ornston (eds.), The Bacteria VII: Mechanisms of Adaptation ( Academic Press, New York ), pp. 111–166.Google Scholar
  18. Macnab, R.M. (1978) ‘Bacterial motility and chemotaxis: the molecular biology of a behavioural system’, CRC Crit. Rev. Biochem., 5, 291–341.CrossRefGoogle Scholar
  19. Sokatch, J.R. (1979) ‘Roles of appendages and surface layers in adaptation of bacteria to their environment’ in J.R. Sokatch and L.N. Ornston (eds.), The Bacteria, VII: Mechanisms of Adaptation ( Academic Press, New York ), pp. 229–289.Google Scholar

Bacterial Growth

  1. Gottschalk, G. (1979) Bacterial Metabolism ( Springer-Verlag, New York).CrossRefGoogle Scholar
  2. Haddock, B.A. and Jones, C.W. (1977) ‘Bacterial respiration’, Microbiol. Rev., 41, 47–99.Google Scholar
  3. Harold, F.M. (1977) ‘Membranes and energy transduction in bacteria’, Curr. Topics Bioenerg., 6, 83–149.Google Scholar
  4. Umbarger, H.E. (1978) ‘Amino acid biosynthesis and its regulation’,Ann. Rev. Biochem., 47, 533–606.CrossRefGoogle Scholar
  5. Meynell, G.G. and Meynell, E. (1970) Theory and Practice in Experimental Bacteriology ( Cambridge University Press, London).Google Scholar
  6. Miller, J.H. (1972) Experiments in Molecular Genetics ( Cold Spring Harbor Laboratory, New York).Google Scholar

Copyright information

© Robert E. Glass 1982

Authors and Affiliations

  • Robert E. Glass
    • 1
  1. 1.NottinghamUK

Personalised recommendations