Error-Correcting Codes and Cryptography

  • N. J. A. Sloane


This paper is intended to serve as an introduction to the exciting developments in secret codes that have taken place in the last ten years. David Kahn’s interesting book The Codebreakers appeared in 1967 [29], which unfortunately was just before IBM described its Lucifer encryption scheme [11], [20], [51] and triggered the developments that I am going to describe.


Encryption Scheme Knapsack Problem Linear Feedback Shift Register Data Encryption Standard Encrypt Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carleial, A. B. and Hellman, M. E. 1977. A note on Wyner’s wiretap channel. IEEE Trans. Info. Theory IT-23: 387–390.Google Scholar
  2. 2.
    Coppersmith, D. and Grossman, E. 1975. Generators for certain alternating groups with applications to cryptography. SIAM J. Applied Math. 29: 624–627.CrossRefGoogle Scholar
  3. 3.
    Data Encryption Standard, Federal Information Processing Standard Publication No. 46, National Bureau of Standards, U.S. Dept. of Commerce, January 1977.Google Scholar
  4. 4.
    Davis, R. M. 1978. The Data Encryption Standard in perspective. IEEE Communications Society Magazine, 16 (November): 5–9.CrossRefGoogle Scholar
  5. 5.
    Diffie, W. and Hellman, M. E. 1976. New directions in cryptography, IEEE Trans. Info. Theory IT-22: 644–654.Google Scholar
  6. 6.
    Diffie, W. and Hellman, M. E. 1976. A critique of the proposed Data Encryption Standard. Comm. ACM 19: 164–165.Google Scholar
  7. 7.
    Diffie, W. and Hellman, M. E. 1977. Exhaustive analysis of the NBS data encryption standard. Computer 10: (June) 74–84.CrossRefGoogle Scholar
  8. 8.
    Diffie, W. and Hellman, M. E. 1979. Privacy and authentication: an introduction to cryptography. Proc. IEEE 67: 397–427.CrossRefGoogle Scholar
  9. 9.
    Evans, A. Jr., Kantrowitz, W., Weiss, E. 1974. A user authentication scheme not requiring secrecy in the computer. Comm. ACM 17: 437–442.CrossRefGoogle Scholar
  10. 10.
    Fåk, V. 1979. Repeated use of codes which detect deception. IEEE Trans. Info. Theory IT-25: 233–234.Google Scholar
  11. 11.
    Feistel, H. 1970. Cryptographic coding for data-bank privacy. Report RC-2827, Yorktown Heights, N.Y.: IBM Watson Research Center.Google Scholar
  12. 12.
    Feistel, H. 1973. Cryptography and computer privacy. Scientific American 228 (May): 15–23.CrossRefGoogle Scholar
  13. 13.
    Feistel, H., Notz, W. A. and Smith, J. L. 1971. Cryptographic techniques for machine to machine data communications. Report RC-3663 Yorktown Heights, N.Y.: IBM Watson Research Center.Google Scholar
  14. 14.
    Feistel, H., Notz, W. A. and Smith, J. L. 1975. Some cryptographic techniques for machine-to-machine data communications. Proc. IEEE 63: 1545–1554.CrossRefGoogle Scholar
  15. 15.
    Gaines, H. F. 1956. Cryptoanalysis New York: Dover.Google Scholar
  16. 16.
    Gallager, R. 1968. Information Theory and Reliable Communication New York: Wiley.Google Scholar
  17. 17.
    Gardner, M. 1977. A new kind of cipher that would take millions of years to break, Scientific American 237 (August): 120–124.CrossRefGoogle Scholar
  18. 18.
    Geffe, P. R. 1967. An open letter to communication engineers. Proc. IEEE 55: 2173.CrossRefGoogle Scholar
  19. 19.
    Gilbert, E. N., MacWilliams, F. J. and Sloane, N. J. A. 1974. Codes which detect deception. Bell Syst. Tech. J. 53: 405–424. For a sequel to this paper see reference [10].Google Scholar
  20. 20.
    Girsdansky, M. B. 1971. Data privacy—Cryptology and the computer at IBM Research. IBM Research Reports 1 (No. 4), 12 pages.Google Scholar
  21. 21.
    Girsdansky, M. B. 1972. Cryptology, the computer and data privacy. Computers and Automation 21 (April): 12–19.Google Scholar
  22. 22.
    Golomb, S. W. ed., 1964. Digital Communications with Space Applications, Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
  23. 23.
    Graham, R. L. Personal communication.Google Scholar
  24. 24.
    Grossman, E. K. and Tuckerman, B. 1977. Analysis of a Feistel-like cipher weakened by having no rotating key. Report RC-6375 Yorktown Heights: N.Y.: IBM Watson Research Center.Google Scholar
  25. 25.
    Guy, R. K. 1975. How to factor a number. Proc. Fifth Manitoba Conference on Numerical Math. pp. 49–89.Google Scholar
  26. 26.
    Hellman, M. E. 1978. An overview of public key cryptography. IEEE Communications Society Magazine 16 (November): 24–32.CrossRefGoogle Scholar
  27. 27.
    Hellman, M. E. 1980. A cryptanalytic time-memory tradeoff. IEEE Trans. Info. Theory. IT-26 (July).Google Scholar
  28. 28.
    Herlestam, T. 1978. Critical remarks on some public-key cryptosys-tems. BIT 18: 493–496.CrossRefGoogle Scholar
  29. 29.
    Kahn, D. 1967. The Codebreakers. New York: Macmillan.Google Scholar
  30. 30.
    Kohnfelder, L. M. 1978. On the signature reblocking problem in public-key cryptosystems. Comm. ACM 21: 179.Google Scholar
  31. 31.
    Leung-Yan-Cheong, S. K. 1977. On a special class of wiretap channels. IEEE Trans. Info. Theory. IT-23: 625–627.CrossRefGoogle Scholar
  32. 32.
    Leung-Yan-Cheong, S. K. and Hellman, M. E. 1978. The Gaussian wiretap channel. IEEE Trans. Info. Theory IT-24: 451–456.CrossRefGoogle Scholar
  33. 33.
    Leung-Yan-Cheong, S. K. and Vacon, G. V. A method for private communication over a public channel, preprint.Google Scholar
  34. 34.
    MacWilliams, F. J. and Sloane, N. J. A. 1976. Pseudo-random sequences and arrays. Proc. IEEE 64: 1715–1729.CrossRefGoogle Scholar
  35. 35.
    MacWilliams, F. J. and Sloane, N. J. A. 1977. The Theory of Error-Correcting Codes New York: Elsevier.Google Scholar
  36. 36.
    McEliece, R. J. 1977. The Theory of Information and Coding Reading, Mass.: Addison-Wesley.Google Scholar
  37. 37.
    McEliece, R. J. 1978. A public-key cryptosystem based on algebraic coding theory. Deep Space Network Progress Report 42–44. Pasadena: Jet Propulsion Labs (January) pp. 114–116.Google Scholar
  38. 38.
    Merkle, R. C. and Hellman, M. E. 1978. Hiding information and signatures in trapdoor knapsacks. IEEE Trans Info. Theory IT-24: 525–530.CrossRefGoogle Scholar
  39. 39.
    Meyer, C. H. and Tuchman, W. L. 1972. Pseudorandom codes can be cracked. Electronic Design 20 (November 9): 74–76.Google Scholar
  40. 40.
    Morris, R. 1978. The Data Encryption Standard—retrospective and prospects. IEEE Communications Society Magazine 16 (November): 11–14.CrossRefGoogle Scholar
  41. 41.
    Morris, R., Sloane, N.J. A. and Wyner, A. D. 1977. Assessment of the National Bureau of Standards Proposed Federal Data Encryption Standard. Cryptologia 1: 281–306.CrossRefGoogle Scholar
  42. 42.
    Purdy, G. B. 1974. A high security log-in procedure. Communications ACM 17: 442–445.CrossRefGoogle Scholar
  43. 43.
    Rivest, R. L. 1978. Remarks on a proposed cryptanalytic attack on the M.I.T. public-key cryptosystem. Cryptologia 2: 62–65.CrossRefGoogle Scholar
  44. 44.
    Rivest, R. L., Shamir, A. and Adelman, L. M. 1978. A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM 21: 120–126.CrossRefGoogle Scholar
  45. 45.
    Shamir, A. 1978. A fast signature scheme. Report TM-107 Laboratory for Computer Science, M.I.T.Google Scholar
  46. 46.
    Shamir, A. 1979. Factoring numbers in O(log n) arithmetic steps. Info. Processing Letters 8: 28–31.CrossRefGoogle Scholar
  47. 47.
    Shamir, A., Rivest, R. L. and Adleman, L. M. Mental Poker. Intra, pp. 37–43.Google Scholar
  48. 48.
    Shamir, A. and Zippel, R. E. 1980. On the security of the Merkle-Hellman cryptographic scheme. IEEE Trans. Info. Theory IT-26 (May).Google Scholar
  49. 49.
    Shannon, C. E. 1949. Communication theory of secrecy systems. Bell Syst. Tech. J. 28: 656–715.Google Scholar
  50. 50.
    Simmons, G.J. and Norris, M.J. 1977. Preliminary comments on the M.I.T. public-key cryptosystem. Cryptologia 1: 406–414.CrossRefGoogle Scholar
  51. 51.
    Smith, J. L. 1971. The design of Lucifer, a cryptographic device for data communications. Report RC-3326 Yorktown Heights, N.Y.: IBM Watson Research Center.Google Scholar
  52. 52.
    Solovay, R. and Strassen, V. 1977. A fast Monte-Carlo test for primality. SIAM J. Computing 6: 84–85 and 7 (1978): 18.Google Scholar
  53. 53.
    Sugarman, R. et al., 1979. On foiling computer crime. IEEE Spectrum 16 (July): 31–41.Google Scholar
  54. 54.
    Vernam, G. S. 1926. Cipher printing telegraph systems for secret wire and radio telegraphic communications. J. AIEE 45: 109–115.Google Scholar
  55. 55.
    Verriest, E. and Hellman, M. E. 1979. Convolutional encoding for Wyner’s wiretrap channel. IEEE Trans. Info. Theory, IT-25: 234–237.CrossRefGoogle Scholar
  56. 56.
    Wyner, A. D. 1975. The wire-tap channel. Bell Syst. Tech. J. 54: 1355–1387.Google Scholar
  57. 57.
    Yuval, G. 1979. How to swindle Rabin. Cryptologia 3: 187–189.CrossRefGoogle Scholar

Copyright information

© Wadsworth International 1981

Authors and Affiliations

  • N. J. A. Sloane
    • 1
  1. 1.Bell LaboratoriesUSA

Personalised recommendations