Dissections into Equilateral Triangles

  • W. T. Tutte


I am delighted to have the opportunity to contribute to this Collection honouring Martin Gardner. I once wrote a paper for his column in Scientific American, about dissections of rectangles into squares [7]. Perhaps another article on dissections would be appropriate here.


Equilateral Triangle Negative Pole Positive Pole Electrical Network Horizontal Segment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berman, K. A. 1978. Spanning trees, arborescences and 4-valent graphs. Thesis. Waterloo.Google Scholar
  2. 2.
    Brooks, R. L.; Smith, B. A. B.; Stone, A. H. and Tutte, W. T. 1940. The dissection of rectangles into squares. Duke Math., 7: 312–340.CrossRefGoogle Scholar
  3. 3.
    Brooks, R. L. 1975. Leaky electricity and triangulated triangles. Philips Res. Reports 30: 205–219.Google Scholar
  4. 4.
    Duijvestijn, A. J. W. 1978. Simple perfect squared square of lowest order. J. Combinatorial Theory В 25: 240–243.CrossRefGoogle Scholar
  5. 5.
    Sprague, R. 1939. Beispiel einer Zerlegung des Quadrats in lauter verschiedene Quadrate. Math. Zeitschrift 45: 607.CrossRefGoogle Scholar
  6. 6.
    Tutte, W. T. 1948. The dissection of equilateral triangles into equilateral triangles. Proc. Cambridge Phil. Soc., 44: 463–482.CrossRefGoogle Scholar
  7. 7.
    Tutte, W. T. 1961. Squaring the square. In The 2nd Scientific American Book of Mathematical Puzzles and Diversions, ed. Martin Gardner. New York: Simon and Schuster.Google Scholar
  8. 8.
    Tutte, W. T. 1973. Duality and trinity. Colloquia Mathematica Societatis Janos Bolyai. 10: 1459–1472.Google Scholar
  9. 9.
    Tutte, W. T. 1976. The rotor effect with generalized electrical flows. Ars Combinatoria 1: 3–31.Google Scholar

Copyright information

© Wadsworth International 1981

Authors and Affiliations

  • W. T. Tutte
    • 1
  1. 1.University of WaterlooCanada

Personalised recommendations