Advertisement

Heavy Metals, Nutrition, and Behavior

  • Robin B. Kanarek
  • Robin Marks-Kaufman

Abstract

In Chapter 4, we examined the essential role of trace elements in the normal functioning of the nervous system. There are, however, a number of trace elements, most often heavy metals, for which no biological function has been established. Included among these heavy metals are lead, mercury, arsenic, antimony, cadmium, and aluminum. Heavy metals enter our food supply from cookware and other food containers, vehicular wastes such as auto exhaust, industrial processes and wastes, and agricultural products such as fertilizers and pesticides. When ingested in sufficient quantities, many of these heavy metals can be extremely toxic.

Keywords

Heavy Metal Neurofibrillary Tangle Lead Level Lead Exposure Blood Lead Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfrey, A. C., LeGendre, G. R., and Kaehny, W. D. 1976. The dialysis encephalopathy syndrome: Possible aluminum intoxication. New England Journal of Medicine 294: 184–188.CrossRefGoogle Scholar
  2. Amin-Zaki, L. 1982. Mercury in food. In Adverse Effects of Foods, ed. E. F. P. Jelliffe and D. B. Jelliffe, pp. 149–159. New York: Plenum.CrossRefGoogle Scholar
  3. Anonymous. 1988. Childhood lead poisoning: Report to the United States Con¬gress by the agency for toxic substances and disease registry. Journal of the American Medical Association 260: 1523–1533.CrossRefGoogle Scholar
  4. Aschner, M. and J. L. Aschner. 1990. Mercury neurotoxicity: Mechanisms of blood-brain barrier transport. Neuroscience and Biobehavioral Reviews 14: 169–176.CrossRefGoogle Scholar
  5. Avridson, B. 1983. Cadmium toxicity and neural cell damage. In Neurobiology of the Trace Elements: Neurotoxicology and Neuropharmacology, vol. 2, ed. I. E. Dreosti and R. M. Smith, pp. 51–78. Clifton, NJ: Humana Press.Google Scholar
  6. Bakir, F., Damluji, S. F., Amin-Zaki, L., Murtadha, M., Khalidi, A., Al-Rawi, N. J., Tikriti, S., Dahir, H. I., Clarkson, T. W., Smith, J. C., and Doherty, R. A. 1973. Methylmercury poisoning in Iraq. Science 181: 230–241.CrossRefGoogle Scholar
  7. Banks, W. A. and Kastin, A. J. 1989. Aluminum-induced neurotoxicity: Altera¬tions in membrane function at the blood-brain barrier. Neuroscience and Biobehavioral Reviews 13: 47–53.CrossRefGoogle Scholar
  8. Bergomi, M., Borella, P., Fantuzzi, G., Vivoli, G., Sturloni, N., Cavazzuti, G., Tampieri, A., and Tartoni, P. L. 1989. Relationship between lead exposure indica¬tors and neuropsychological performance in children. Developmental Medicine and Child Neurology 31: 181–190.CrossRefGoogle Scholar
  9. Boegman, R. J. and Bates, L. A. 1984. Neurotoxicity of aluminum. Canadian Journal of Physiology and Pharmacology 62: 1010–1014.CrossRefGoogle Scholar
  10. Bowdler, N. C., Beasley, D. S., Fritze, C., Goulette, A. M., Hatton, J. D., Hession, J., Ostman, D. L., Rugg, D. J., and Schmittdiel, C. J. 1979. Behavioral effects of aluminum ingestion on animal and human subjects. Pharmacology Biochemistry and Behavior 10: 505–512.CrossRefGoogle Scholar
  11. Burbacher, T. M., P. M. Rodier, and B. Weiss. 1990. Methylmercury develop¬mental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicology and Teratology 12: 191–202.CrossRefGoogle Scholar
  12. Byers, R. K. and Lord, E. E. 1943. Late effects of lead poisoning on mental development. American Journal of Diseases of Children 66: 471–494.Google Scholar
  13. Chisholm, J. J. 1971. Lead poisoning. Scientific American 224: 15–23.CrossRefGoogle Scholar
  14. Choi, B. H. 1989. The effects of methylmercury on the developing brain. Progress in Neurobiology 32: 447–470.CrossRefGoogle Scholar
  15. Clarkson, T. W. 1988. Mercury toxicity. In Essential and Toxic Trace Elements in Human Health and Disease, ed. A. S. Prasad, pp. 631–643. New York: Alan R. Liss.Google Scholar
  16. Clarkson, T. W., Amin-Zaki, L., and Al-Tikriti, S. K. 1976. An outbreak of methylmercury poisoning due to consumption of contaminated grain. Federation Proceedings 35: 2395–2399.Google Scholar
  17. Crapper, D. R., Krishman, S. S., and Quittkat, S. 1976. Aluminum, neurofibrillary degeneration and Alzheimer’s disease. Brain 99: 67–80.CrossRefGoogle Scholar
  18. Crapper-McLachlan, D. R., and DeBoni, U. 1980. Aluminum in human brain disease: An overview. Neurotoxicology 1: 3–16.Google Scholar
  19. Davis, J. M., D. A. Otto, D. E. Weil, and L. D. Grant. 1990. The comparative developmental neurotoxicity of lead in humans and animals. Neurotoxicology and Teratology 12: 215–229.CrossRefGoogle Scholar
  20. Dietrich, K. N., Krafft, K. M., Bornschein, R. L., Hammond, P. B., Berger, O., Succop, P. A., and Bier, M. 1987. Low-level fetal lead exposure effects on neuro- behavioral development in early infancy. Pediatrics 80: 721–730.Google Scholar
  21. Ereshefsky, L., Rospond, R., and Jann, M. 1989. Organic brain syndromes, Alzheimer type. In Pharmacotherapy: A Pathophysiological Approach, ed. J. T. DiPiro et al., pp. 678–696. New York: Elsevier.Google Scholar
  22. Ernhart, C. B., Morrow-Tlucak, M., Marler, M. R., and Wolf, A. W. 1987. Low-level lead exposure in the prenatal and early preschool periods: Early pre¬school development. Neurotoxicology and Teratology 9: 259–270.CrossRefGoogle Scholar
  23. Ernhart, C. B., Morrow-Tlucak, M., Wolf, A. W., Super, D., and Drotar, D. 1989. Low-level lead exposure in the prenatal and early preschool periods: Intelligence prior to school entry. Neurotoxicology and Teratology 11: 161–170.CrossRefGoogle Scholar
  24. Fulton, M., Raab, G., Thomson, G., Laxen, D., Hunter, R., and Hepburn, W. 1987. Influence of blood lead on the ability and attainment of children in Edinburgh. Lancet 1: 1221–1226.CrossRefGoogle Scholar
  25. Harada, M. 1982. Minamata disease: Organic mercury poisoning caused by in¬gestion of contaminated fish. In Adverse Effects of Foods, ed. E. F. P. Jelliffe and D. B. Jelliffe, pp. 135–148. New York: Plenum.CrossRefGoogle Scholar
  26. Inskip, M.J. and Piotrowski, J. T. 1985. Review of the health effects of methylmercury. Journal of Applied Toxicology 5: 113–123.CrossRefGoogle Scholar
  27. Klaassen, C. D. 1980. Heavy metals and heavy-metal antagonists. In The Pharmacological Basis of Therapeutics, ed, A. G. Gilman, L. S. Goodman, and A. Gilman, pp. 1615–1637. New York: Macmillan.Google Scholar
  28. Lansdown, R., Yule, W., Urbanowitz, M. A., and Hunter. J. 1986. The relation¬ship between blood-lead concentrations, intelligence, attainment and behavior in a school population: The second London study. International Archives of Occupational and Environmental Health 57: 225–235.CrossRefGoogle Scholar
  29. Lindsay, D. G. and Sherlock, J. C. 1982. Environmental contaminants. In Adverse Effects of Foods, ed. E. F. P. Jelliffe and D. B. Jelliffe, pp. 85–110. New York: Plenum.CrossRefGoogle Scholar
  30. Maracek, J., Shapiro, I. M., Katz, S. H., and Hediger, M. L. 1983. Low-level lead exposure in childhood influences neuropsychological performance. Archives of Environmental Health 38: 355–359.Google Scholar
  31. Markesbery, W. R. and Ehmann, W. D. 1988. Trace elements in dementing disorders. In Nutritional Modulation of Neural Function, ed. J. E. Morley, M. B. Sterman, and J. H. Walsh, pp. 179–190. New York: Academic Press.Google Scholar
  32. McConnell, P. 1983. Neurotoxic effects of lead. In Neurobiology of the Trace Elements: Neurotoxicology and Neuropharmacology, vol. 2, ed. I. E. Dreosti and R. M. Smith, pp. 141–166. Clifton, NJ: Humana Press.Google Scholar
  33. McDermott, J. R., Smith, A. I., Ward, M. K., Parkinson, I. S., and Kerr, D. N. S. 1978. Brain aluminum concentration in dialysis encephalopathy. Lancet 1: 901–903.CrossRefGoogle Scholar
  34. Miller, R. W. 1989. The metal in our mettle. FDA Consumer, pp. 24–27.Google Scholar
  35. Needleman, H. L. 1982. The neurobehavioral consequences of low lead exposure in childhood. Neurobehavioral Toxicology and Teratology 4: 729–732.Google Scholar
  36. Needleman, H. L. 1987. Low-level lead exposure in the fetus and young child. Neurotoxicology 8: 389–394.Google Scholar
  37. Needleman, H. L. 1989. The persistent threat of lead: A singular opportunity. American Journal of Public Health 79: 643–645.CrossRefGoogle Scholar
  38. Needleman, H. L., Gunnoe, C., Leviton, A., Reed, R., Peresie, H., Maher, C., and Barrett, P. 1979. Deficits in psychologic and classroom performance of chil¬dren with elevated dentine lead levels. New England Journal of Medicine 300: 689–695.CrossRefGoogle Scholar
  39. Needleman, H. L., Schell, A., Bellinger, D., Leviton, A., and Allred, E. N. 1990. The long-term effects of exposure to low doses of lead in childhood: An 11-year follow-up report. New England Journal of Medicine 322: 83–88.CrossRefGoogle Scholar
  40. Petit, T. L. 1983. Aluminum neurobehavioral toxicology. In Neurobiology of the Trace Elements: Neurotoxicology and Neuropharmacology, vol. 2, ed. I. E. Dreosti and R. M. Smith, pp. 237–274. Clifton, NJ: Humana Press.Google Scholar
  41. Petit, T. L. and Alfano, D. P. 1983. Neurobiological and behavioral effects of lead. In Neurobiology of the Trace Elements: Neurotoxicology and Neuropharmacology, vol. 2, ed. I. E. Dreosti and R. M. Smith, pp. 97–139. Clifton, NJ: Humana Press.Google Scholar
  42. Pierro, L. J. 1983. Cadmium and teratogenesis of the central nervous system. In Neurobiology of the Trace Elements: Neurotoxicology and Neuropharmacology, vol. 2, ed. I. E. Dreosti and R. M. Smith, pp. 79–96. Clifton, NJ: Humana Press.Google Scholar
  43. Pim, L. R. 1981. The Invisible Additives: Environmental Contaminants in our Food, Toronto, Canada: Doubleday.Google Scholar
  44. Ruff, H. A. and Bijur, P. E. 1989. The effects of low to moderate lead levels on neurobehavioral functioning in children: Toward a conceptual model. Journal of Developmental Behavioral Pediatrics 10: 103–109.CrossRefGoogle Scholar
  45. Skerfving, S. 1988. Toxicology of inorganic lead. In Essential and Toxic Trace Elements in Human Health and Disease, ed. A. S. Prasad, pp. 611–630. New York: Alan R. Liss.Google Scholar
  46. Slotkin, T. A. and Bartolome, J. 1987. Biochemical mechanisms of developmental neurotoxicity of methylmercury. Neurotoxicology 8: 65–84.Google Scholar
  47. Smith, M. 1985. Recent work on low-level lead exposure and its impact on behav¬ior, intelligence, and learning: A review. Journal of the American Academy of Child Psychiatry 24: 24–32.CrossRefGoogle Scholar
  48. Smith, W. E. and Smith, A. M. 1975. Minamata. New York: Holt, Rinehart and Winston.Google Scholar
  49. Warkany, J. and Hubbard, D. M. 1948. Mercury in the urine of children with acrodynia. Lancet 1: 829–830.CrossRefGoogle Scholar
  50. Warkany, J. and Hubbard, D. M. 1951. Adverse mercurial reactions in the form of acrodynia and related conditions. American Journal of Diseases of Children 81: 335–373.Google Scholar
  51. Weiss, B. 1983. Behavioral toxicology of heavy metals. In Neurobiology of the Trace Elements: Neurotoxicology and Neuropharmacology, vol. 2, ed. I. E. Dreosti and R. M. Smith, pp. 1–50. Clifton, NJ: Humana Press.Google Scholar
  52. Whanger, P. D. 1982. Factors affecting the metabolism of nonessential metals in foods. In Nutritional Toxicology, vol. 1, ed. J. N. Hathcock, pp. 163–208. New York: Academic Press.Google Scholar
  53. Winneke, G., Brockhaus, A., Collet, W., and Kramer, U. 1989. Modulation of lead-induced performance deficit in children by varying signal rate in a serial choice reaction task. Neurotoxicology and Teratology 11: 587–592.CrossRefGoogle Scholar
  54. Yase, Y. 1980. The role of aluminum in CNS degeneration with the interaction of calcium. Neurotoxicology 1: 101–109.Google Scholar
  55. Yip, R., Norris, R. N., and Anderson, A. S. 1981. Iron status of children with elevated blood lead concentrations. Journal of Pediatrics 98: 922–924.CrossRefGoogle Scholar
  56. Yokel, R. A. 1989. Aluminum produces age-related behavioral toxicity in the rabbit. Neurotoxicology and Teratology 11: 237–242.CrossRefGoogle Scholar
  57. Yule, W., Lansdown, R., Millar, I. B., and Urbanowitz, M. A. 1981. The relationships between blood lead concentrations, intelligence and attainment in a school population: A pilot study. Developmental Medicine and Child Neurology 23: 567–576.CrossRefGoogle Scholar

Copyright information

© Van Nostrand Reinhold 1991

Authors and Affiliations

  • Robin B. Kanarek
    • 1
  • Robin Marks-Kaufman
    • 1
  1. 1.Tufts UniversityMedfordUSA

Personalised recommendations