Advertisement

Trace Minerals, the Central Nervous System, and Behavior

  • Robin B. Kanarek
  • Robin Marks-Kaufman

Abstract

Awareness that small amounts of inorganic compounds are imperative for normal growth began over a century ago when it was recognized that iron, copper, and zinc were essential for the maturation of plants and microorganisms. Further evidence of the importance of these minerals for animal nutrition was subsequently derived from two major sources: basic studies on the effects of specially formulated diets, low or high in a specific mineral, on growth and reproduction in animals; and the realization that a number of endemic diseases of man and animals resulted from mineral deficiencies.

Keywords

Thyroid Hormone Thyroid Gland Iron Deficiency Zinc Deficiency Iodine Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apgar, J. 1985. Zinc and reproduction. Annual Review of Nutrition 5: 43–68.CrossRefGoogle Scholar
  2. Avioli, L. V. 1988. Calcium and phosphorous. In Modern Nutrition in Health and Disease, 7th ed., ed. M. E. Shils and V. R. Young, pp. 142–158, Philadelphia: Lea & Febiger.Google Scholar
  3. Burton, B. T., W. R. Foster. 1988. Human Nutrition. New York: McGraw-Hill.Google Scholar
  4. Chesters, J. K. and J. Quarterman. 1970. Effects of zinc deficiency on food intake and feeding patterns of rats. British Journal of Nutrition 24: 1061–1069.CrossRefGoogle Scholar
  5. Dallman, P. R. 1986. Biochemical basis for the manifestations of iron deficiency. Annual Review of Nutrition 6: 13–40.CrossRefGoogle Scholar
  6. Dreosti, I. E. 1984. Zinc in the central nervous system: The emerging interactions. In The Neurobiology of Zinc.Physiochemistry, Anatomy and Techniques, ed. C. J. Fredrickson, G. A. Howell, and E. J. Kasarskis, pp. 1–26. New York: Alan R. Liss.Google Scholar
  7. Dvergsten, C. L., G. J. Fosmire, D. A. Ollerich, and H. H. Sandstead. 1983. Alterations in the postnatal development of the cerebellar cortex due to zinc deficiency. I: Impaired acquisition of granule cells. Brain Research 271: 217–226.CrossRefGoogle Scholar
  8. Edgerton V. R., Y. Ohira, G. W. Gardner, and B. Senewiratne. 1982. Effects of iron-deficiency anemia on voluntary activities in rats and humans. In Iron Deficiency: Brain Biochemistry and Behavior, ed. E. Pollitt and R. L. Liebel, pp. 141–160. New York: Raven Press.Google Scholar
  9. Fairbanks, V. F. and E. Beutler. 1988. Iron. In Modern Nutrition in Health and Disease, 7th ed., ed. M. E. Shils and V. R. Young, pp. 193–226. Philadelphia: Lea & Febiger.Google Scholar
  10. Finch, C. A. and J. D. Cook. 1984. Iron deficiency. American Journal of Clinical Nutrition 39: 471–477.Google Scholar
  11. Food and Nutrition Board, Commission on Life Sciences, National Research Council, 1989. Recommended Dietary Allowances, 10th ed. Washington, D.C.: National Academy Press.Google Scholar
  12. Freeland-Graves, J. H., M. L. Ebangit, and P. J. Hendrikson. 1980. Alterations in zinc absorption and salivary sediment zinc after a lacto-ovo-vegetarian diet. American Journal of Clinical Nutrition 33: 1757–1766.Google Scholar
  13. Greene, L. S. 1977. Hyperendemic goiter, cretinism, and social organization in highland Ecuador. In Malnutrition, Behavior and Social Organization, ed. L. S. Greene, pp. 55–94. New York: Academic Press.Google Scholar
  14. Guthrie, H. A. 1989. Introductory Nutrition. Boston: Times Mirror/Mosby.Google Scholar
  15. Halas, E. S. 1983. Behavioral changes accompanying zinc deficiency in animals. In Neurobiology of the Trace Elements, vol. 1, ed. I. E. Dreosti and R. M. Smith, pp. 213–243. Clifton, N.J.: Humana Press.CrossRefGoogle Scholar
  16. Halas, E. S., M. D. Heinrich, and H. H. Sandstead. 1979. Long–term memory deficits in adult rats due to postnatal malnutrition. Physiology and Behavior 22: 991–997.CrossRefGoogle Scholar
  17. Hallberg, L. 1984. Iron. In Present Knowledge in Nutrition, ed. R. E. Olson et al., pp. 459–478. Washington, D.C.: Nutrition Foundation.Google Scholar
  18. Henkin, R. I., R. L. Aamodt, R. P. Agarwal, and D. A. Foster. 1982. The role of zinc in taste and smell. Current Topics in Nutrition and Disease 6: 161–188.Google Scholar
  19. Hetzel, B. S., J. Chavedej, and B. J. Potter. 1988. The brain in iodine deficiency. Neuropathology and Applied Neurobiology 14: 93–104.CrossRefGoogle Scholar
  20. Hetzel, B. S. and J. T. Dunn. 1989. The iodine–deficiency disorders: Their nature and prevention. Annual Review of Nutrition 9: 21–38.CrossRefGoogle Scholar
  21. Hetzel, B. S. and M. T. Mano. 1989. A review of experimental studies of iodine deficiency during fetal development. Journal of Nutrition 119: 145–151.Google Scholar
  22. Hurley, L. S. and H. Swenerton. 1966. Congenital malformations resulting from zinc deficiency in rats. Proceedings of the Society for Experimental Biology and Medicine 123: 692–697.Google Scholar
  23. Keen, C. L. and L. S. Hurley. 1987. Effects of zinc deficiency on prenatal and postnatal development. Neurotoxicology 8: 378–386.Google Scholar
  24. Lozoff, B., G. Brittenham, F. E. Viteri, and J. J. Urrutia. 1982a. Behavioral abnormalities in infants with iron-deficiency anemia. In Iron Deficiency: Brain Biochemistry and Behavior, ed. E. Pollitt and R. L. Leibel, pp. 183–194. New York: Raven Press.Google Scholar
  25. Lozoff, B., G. Brittenham, F. E. Viteri, A. W. Wolf, and J. J. Urrutia. 1982b. The effects of short-term oral iron therapy on developmental deficits in iron-deficient anemic infants. Journal of Pediatrics 100: 351–357.CrossRefGoogle Scholar
  26. Lozoff, B., G. Brittenham, F. E. Viteri, A. W. Wolf, and J. J. Urrutia. 1982c. Developmental deficits in iron-deficient infants: Effects of age and severity of iron lack. Journal of Pediatrics 101: 948–951.CrossRefGoogle Scholar
  27. McKenzie, J. M., G. J. Fosmire, and H. H. Sandstead. 1975. Zinc deficiency during the latter third of pregnancy: Effects on fetal rat brain, liver and placenta. Journal of Nutrition 105: 1466–1475.Google Scholar
  28. Moser-Veillon, P. B. 1990. Zinc: consumption patterns and dietary recommendations. Journal of the American Dietetic Association 90: 1089–1093.Google Scholar
  29. Pollitt. E. 1987. Effects of iron deficiency on mental development: Methodological considerations and substantive findings. In Nutritional Anthropology, ed. F. E. Johnson, pp. 225–254. New York: Alan R. Liss.Google Scholar
  30. Pollitt, E., R. L. Leibel, and D. B. Greenfield. 1983. Iron deficiency and cognitive test performance in preschool children. Nutrition and Behavior 1: 137–146.Google Scholar
  31. Pollitt, E. and E. Metallinos-Katsaras, 1990. Iron deficiency and behavior. Con-structs, methods and validity of the findings. In Nutrition and the Brain, vol. 8, ed. R. J. Wurtman and J. J. Wurtman, pp. 101–146, New York: Raven Press.Google Scholar
  32. Pollitt, E., A. G. Soemantes, F. Yunis, and N. S. Scrimshaw. 1985. Cognitive effects of iron-deficiency anaemia. Lancet 1: 158.CrossRefGoogle Scholar
  33. Pollitt, E., F. Viteri, C. Saco-Pollitt, and R. L. Leibel. 1982. Behavioral effects of iron-deficiency anemia in children. In Iron Deficiency: Brain Biochemistry and Behavior, ed. E. Pollitt and R. L. Leibel, pp. 195–208. New York: Raven Press.Google Scholar
  34. Prasad, A. S. 1985. Clinical manifestations of zinc deficiency. Annual Review of Nutrition 5: 341–363.CrossRefGoogle Scholar
  35. Prasad, A. S. 1988. Clinical spectrum and diagnostic aspects of human zinc deficiency. In Essential and Toxic Trace Elements in Human Health and Disease, pp. 3–53, New York: Alan R. Liss.Google Scholar
  36. Prasad, A. S., J. A. Halsted, and M. Nadimi. 1961. Syndrome of iron-deficiency anemia, hepatospenomegaly, hypogonadism, dwarfism and geophagia. American Journal of Medicine 31: 532–546.CrossRefGoogle Scholar
  37. Randall, H. T. 1988. Water, electrolytes, and acid-base balance. In Modern Nutrition in Health and Disease, 7th ed., ed. M. E. Shils and Y. R. Young, pp. 108–141. Philadelphia: Lea & Febiger.Google Scholar
  38. Record, I. R. 1987. Zinc deficiency and the developing embryo. Neurotoxicology 8: 369–378.Google Scholar
  39. Robinson, C. H. and M. R. Lawler. 1982. Normal and Therapeutic Nutrition. New York: Macmillian. Orlando, FL: Academic Press.Google Scholar
  40. Sandstead, H. H. and G. W. Evans. 1984. Zinc. In Present Knowledge in Nutrition, ed. R. E. Olson et al., pp. 479 - 505. Washington, D.C.: Nutrition Foundation.Google Scholar
  41. Sandstead, H. H., D. D. Gillespie, and R. N. Brady. 1972. Zinc deficiency: Effect on brain of the suckling rat. Pediatric Research 6: 119–125.CrossRefGoogle Scholar
  42. Smith, M. A. 1989. Thyroid disorders. In Pharmacotherapy: A Pathophysiologic Approach, ed. J. T. DiPiro et al., pp. 791–804. New York: Elsevier.Google Scholar
  43. Stanbury, J. B. 1977. The role of the thyroid in the development of the human nervous system. In Malnutrition, Behavior, and Social Organization, ed. L. S. Greene, pp. 39–54. New York: Academic Press.Google Scholar
  44. Stanbury, J. B. 1988. Iodine. In Modern Nutrition in Health and Disease, 7th ed., ed. M. E. Shils and V. R. Young, pp. 227–237. Philadelphia: Lea & Febiger.Google Scholar
  45. Strobel, D. A. and H. H. Sandstead. 1984. Social and learning changes following prenatal or postnatal zinc deprivation in rhesus monkeys. In The Neurobiology of Zinc, ed. I. E. Dreosti and R. M. Smith, pp. 121–138. New York: Alan R. Liss.Google Scholar
  46. Tucker, D. M. and H. H. Sandstead. 1982. Body iron stores and cortical arousal. In Iron Deficiency: Brain Biochemistry and Behavior, ed. E. Pollitt and R. L. Leibel, pp. 161–181. New York: Raven Press.Google Scholar
  47. Walling, A., M. Householder, and A. Walling. 1989. Acrodermatitis enteropathica. American Family Physician 39: 151–154.Google Scholar
  48. Wallwork, J. C., G. J. Fosmire, and H. H. Sandstead. 1981. Effect of zinc deficiency on appetite and plasma amino acid concentrations in the rat. British Journal of Nutrition 45: 127–136.CrossRefGoogle Scholar
  49. Walter, R., J. Kovalskys, and A. Stekel. 1983. Effect of mild iron deficiency on infant mental development scores. Journal of Pediatrics 102: 519–522.CrossRefGoogle Scholar
  50. Youdim, M. B. H., S. Yehuda, D. Ben-Shachar, and R. Ashkenazi. 1982. Behavioral and brain biochemical changes in iron-deficient rats: The involvement of iron in dopamine receptor function. In Iron Deficiency: Brain Biochemistry and Behavior, ed. E. Pollitt and R. L. Leibel, pp. 39–56. New York: Raven Press.Google Scholar

Copyright information

© Van Nostrand Reinhold 1991

Authors and Affiliations

  • Robin B. Kanarek
    • 1
  • Robin Marks-Kaufman
    • 1
  1. 1.Tufts UniversityMedfordUSA

Personalised recommendations