Advertisement

Experimental Biology, Pure and Applied

  • Vincent B. Wigglesworth

Abstract

There are those who really believe that the purpose of science is to increase human welfare. That was the vision which inspired Francis Bacon, writing of the ‘Novum Organum’ at a time when modern science scarcely existed, and advocating a scientific procedure, which, by and large, has proved unproductive. It was the vision, also, which inspired Joseph Priestley, writing 150 years later when experimental science was really getting under way. Priestley predicted the profound effects that the new knowledge was going to have on human affairs.

Keywords

Juvenile Hormone Cuticular Lipid Cement Layer Insect Cuticle Pore Canal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, P., Kitchener, J. A. and Briscoe, H. V. A. (1944) Inert dust insecticides. I. Mechanism of action. Ann. Appl. Biol., 31, 143–149.CrossRefGoogle Scholar
  2. Andersen, S. O. and Barrett, F. M. (1971) The isolation of ketocatechols from insect cuticle and their possible role in sclerotization. J. Insect Physiol, 17, 69–84.CrossRefGoogle Scholar
  3. Andersen, S. O. and Weis-Fogh, T. (1964) Resilin: a rubberlike protein in arthropod cuticle. Adv. Insect Physiol., 2, 1–66.CrossRefGoogle Scholar
  4. Atkinson, P. W. and Gilby, A. R. (1970) Autoxidation of insect lipids: inhibition on the cuticle of the American cockroach. Science, N. Y., 168, 992.CrossRefGoogle Scholar
  5. Baker, G., Pepper, J. H., Johnson, L. H. and Hastings, E. (1960) Estimation of the composition of the cuticular wax of the Mormon cricket Anabrus simplex Hald. J. Insect Physiol., 5, 47–60.CrossRefGoogle Scholar
  6. Beament, J. W. L. (1945) The cuticular lipoids of insects. J. Exp. Biol., 21, 115–131.Google Scholar
  7. Beament, J. W. L. (1955) Wax secretion in the cockroach. J. Exp. Biol., 32, 514–538.Google Scholar
  8. Beament, J. W. L. (1961) The water relations of insect cuticle. Biol. Rev., 36, 281–320.CrossRefGoogle Scholar
  9. Beatty, I. M. and Gilby, A. R. (1969) The major hydrocarbon of a cockroach cuticular wax. Naturwissenschaften, 56, 373.CrossRefGoogle Scholar
  10. Bennet-Clark, H. C. (1962) Active control of the mechanical properties of insect endocuticle. J. Insect Physiol., 8, 627–633.CrossRefGoogle Scholar
  11. Brunet, P. C. J. (1967) Sclerotins. Endeavour, 26, 68–74.Google Scholar
  12. Bursell, E. and Clements, A. N. (1967) The cuticular lipids of the larva of Tenebrio molitor L. (Coleoptera). J. Insect Physiol., 13, 1671–1678.CrossRefGoogle Scholar
  13. Cockeram, H. S. and Levine, S. A. (1961) The physical and chemical properties of shellac. J. Soc. Cosmet. Chem., 12, 316–323.Google Scholar
  14. Collins, M. S. and Richards, A. G. (1966) Studies on water relations in North American termites. II. Water loss and cuticular structures in eastern species of the Kalotermitidae (Isoptera). Ecology, 47, 328–331.CrossRefGoogle Scholar
  15. Dennell, R. and Malek, S. R. A. (1955) The cuticle of the cockroach Periplaneta americana. III. The hardening of the cuticle: impregnation preparatory to phenolic tanning. Proc. R. Soc. B, 143, 414–426.CrossRefGoogle Scholar
  16. Ebeling, W. (1961) Physicochemical mechanisms for the removal of insect wax by means of finely divided powders. Hilgardia, 30, 531–585.Google Scholar
  17. Gilby, A. R. and Cox, M. E. (1963) The cuticular lipids of the cockroach, Periplaneta americana (L.). J. Insect Physiol., 9, 671–681.CrossRefGoogle Scholar
  18. Gilby, A. R. and McKellar, J. W. (1970) The composition of the empty puparia of a blowfly. J. Insect Physiol., 16, 1517–1529.CrossRefGoogle Scholar
  19. Hackman, R. H. (1964) Chemistry of insect cuticle. In The Physiology of Insecta, vol. 3. Ed. M. Rockstein, pp. 471–506. New York: Academic Press.Google Scholar
  20. Hazelhoff, E. H. (1927) Die Regulierung der Atmung bei Insekten und Spinnen. Z. vergl. Physiol., 5, 179–190.CrossRefGoogle Scholar
  21. Karlson, P. and Sekeris, C. E. (1962) N-Acetyl-dopamine as sclerotizing agent of the insect cuticle. Nature, Lond., 195, 183–184.CrossRefGoogle Scholar
  22. Kramer, S. and Wigglesworth, V. B. (1950) The outer layers of the cuticle in the cockroach Periplaneta americana and the function of the oenocytes. Q. Jl. Microsc. Sci., 91, 63–72.Google Scholar
  23. Kühnelt, W. (1928) Über den Bau des Insektenskelettes. Zool. Jb. (Abt. Anat.), 50, 219–272.Google Scholar
  24. Locke, M. (1961) Pore canals and related structures in insect cuticle. J. Biophys. Biochem. Cytol., 10, 589–618.CrossRefGoogle Scholar
  25. Mellanby, K. (1934) The site of loss of water from insects. Proc. R. Soc. B, 116, 139–149.CrossRefGoogle Scholar
  26. Neville, A. C. (1965) Chitin lamellogenesis in locust cuticle. Q. Jl. Microsc. Sci., 106, 269–286.Google Scholar
  27. Neville, A. C. (1967) Chitin orientation in cuticle and its control. Adv. Insect Physiol., 4, 213–286.CrossRefGoogle Scholar
  28. Odier, A. (1823) Memoire sur la composition chimique des partes cornees des Insectes. Mem Soc. Hist. nat. Paris, 1, 29–42.Google Scholar
  29. Pryor, M. G. M. (1940a) On the hardening of the oötheca of Blatta orientalis. Proc. R. Soc. B, 128, 378–393.CrossRefGoogle Scholar
  30. Pryor, M. G. M. (1940b) On the hardening of the cuticle of insects. Proc. R. Soc. B, 128, 393–407.CrossRefGoogle Scholar
  31. Ramsay, J. A. (1935) The evaporation of water from the cockroach. J. Exp. Biol., 12, 373–383.Google Scholar
  32. Röller, H. and Dahm, K. H. (1968) The chemistry and biology of juvenile hormone. Recent Prog. Horm. Res., 24, 651–680.Google Scholar
  33. Rudall, K. M. (1963) The chitin/protein complexes of insect cuticles. Adv. Insect Physiol., 1, 257–313.CrossRefGoogle Scholar
  34. Wigglesworth, V. B. (1933) The physiology of the cuticle and of ecdysis in Rhodnius prolixus with special reference to the function of the oenocytes and of the dermal glands. Q. Jl. Microsc. Sci., 76, 269–318.Google Scholar
  35. Wigglesworth, V. B. (1934) The physiology of ecdysis in Rhodnius prolixus (Hempitera). II. Factors controlling moulting and ‘metamorphosis’ Q. Jl Microsc. Sc., 77, 191–222.Google Scholar
  36. Wigglesworth, V. B. (1935) The regulation of respiration in the flea Xenopsylla cheopis Roths. (Pulicidae). Proc. R. Soc. B, 118, 397–419.CrossRefGoogle Scholar
  37. Wigglesworth, V. B. (1942) Some notes on the integument of insects in relation to the entry of contact insecticides. Bull. Ent. Res., 33, 205–218.CrossRefGoogle Scholar
  38. Wigglesworth, V. B. (1944) Medical entomology. Discovery, April 1944, 115–119.Google Scholar
  39. Wigglesworth, V. B. (1945) Transpiration through the cuticle of insects. J. Exp. Biol., 21,97–114.Google Scholar
  40. Wigglesworth, V. B. (1947a) The epicuticle in an insect, Rhodnius prolixus (Hemiptera). Proc. R. Soc. B, 134, 163–181.CrossRefGoogle Scholar
  41. Wigglesworth, V. B. (1947b) The site of action of inert dusts on certain beetles infesting stored products. Proc. R. Ent. Soc. Lond. A., 22, 65–69.Google Scholar
  42. Wigglesworth, V. B. (1948) The structure and deposition of the cuticle in the adult mealworm, Tenebrio molitor L. (Coleoptera). Q. Jl Microsc. Sci., 89, 197–217.Google Scholar
  43. Wigglesworth, V. B. (1970) Structural lipids in the insect cuticle and the function of the oenocytes. Tissue Cell, 2, 155–179.CrossRefGoogle Scholar
  44. Wigglesworth, V. B. (1975) Distribution of lipid in the lamellate endocuticle of Rhodnius prolixus (Hemiptera). J. Cell Sci., 19, 439–457.Google Scholar

Copyright information

© V. B. Wigglesworth 1976

Authors and Affiliations

  • Vincent B. Wigglesworth
    • 1
  1. 1.Agricultural Research Council Unit of Insect PhysiologyUniversity of CambridgeUSA

Personalised recommendations