Advertisement

The Insect as a Medium for the Study of Physiology

  • Vincent B. Wigglesworth

Abstract

Insects live and feed, move, grow and multiply like other animals; but they are so varied in form, so rich in species, and adapted to such diverse conditions of life that they afford unrivalled opportunities for physiological study. The general problems of physiology are much the same in all groups of animals; and this lecture, which represents, in effect, an apology for the study of insect physiology, is an attempt to show that among the insects may be found material well suited for the solution of many of these problems.

Keywords

Uric Acid Epidermal Cell Juvenile Hormone Mosquito Larva Nymphal Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beament, J. W. L. (1945) The cuticular lipoids of insects. J. Exp. Biol., 21, 115–131.Google Scholar
  2. Bone, G. and Koch, H. J. (1942) Le role des tubes de Malpighi et du rectum dans la regulation ionique chez les insectes. Ann. Soc. Roy. Zool. Belg., 73, 73–87.Google Scholar
  3. Brecher, G. and Wigglesworth, V. B. (1944) The transmission of Actinomyces rhodnii Erikson in Rhodnius prolixus Stål (Hemiptera) and its influence on the growth of the host. Parasitology, 35, 220–224.CrossRefGoogle Scholar
  4. Chibnall, A. C. and Piper, S. H. (1934) The metabolism of plant and insect waxes. Biochem. J., 28, 2209–2219.Google Scholar
  5. Fraenkel, G. (1935) Observations and experiments on the blowfly (Calliphora erythrocephala) during the first day after emergence. Proc. Zool. Soc. Lond., 893–904.Google Scholar
  6. Gillett, J. D. and Wigglesworth, V. B. (1932) The climbing organ of an insect, Rhodnius prolixus (Hemiptera, Reduviidae). Proc. Roy. Soc. B., 111, 364–376.CrossRefGoogle Scholar
  7. Hanström, B. (1941) Einige Parallelen im Bau und in der Herkunft der inkretorischen Organe der Arthropoden und der Vertebraten. Acta Univ. lund. N.F., Avd., 2. 37, No. 4, 1–19.Google Scholar
  8. Haworth, W. N. (1946) The structure, function and synthesis of polysaccharides. Proc. Roy. Soc. A., 186, 1–19.CrossRefGoogle Scholar
  9. Hazelhoff, E. H. (1926) Regeling der ademhaling bij insecten en spinnen. Thesis, Utrecht.Google Scholar
  10. Koch, H. (1938) The absorption of chloride ions by the anal papillae of Diptera larvae. J. Exp. Biol., 15, 152–160.Google Scholar
  11. Lass, M. (1905) Beiträge zur Kenntnis des histologisch-anatomischen Baues des weiblichen Hundeflohes (Pulex canis Dugès u. Pulex serraticeps Taschenberg). Z. wiss. Zool., 79, 73–131.Google Scholar
  12. Lees, A. D. and Beament, J. W. L. (1948) An egg-waxing organ in ticks. Quart. J. Micr. Sci., 89, 291–332.Google Scholar
  13. Lemberg, R., Legge, L. W. and Lockwood, W. H. (1939) Coupled oxidation of ascorbic acid and haemoglobin. Biochem. J., 33, 754–758.Google Scholar
  14. Lemberg, R., Legge, L. W. and Lockwood, W. H. (1941) Formation and properties of choleglobin. Biochem. J., 35, 328–338.Google Scholar
  15. Mellanby, K. (1934) The site of loss of water from insects. Proc. Roy. Soc. B., 116, 139–149.CrossRefGoogle Scholar
  16. Patton, R. L. and Craig, R. (1939) The rates of excretion of certain substances by the larvae of the mealworm, Tenebrio molitor L. J. Exp. Zool., 81, 437–457.CrossRefGoogle Scholar
  17. Pryor, M. G. M. (1940) On the hardening of the cuticle of insects. Proc. Roy. Soc. B., 128, 393–407.CrossRefGoogle Scholar
  18. Scharrer, B. and Scharrer, E. (1944) Neurosecretion. vi. A comparison between the intercerebralis-cardiacum-allatum system of the insects and the hypothalamo-hypophyseal system of the vertebrates. Biol. Bull. Woods Hole, 87, 242–251.CrossRefGoogle Scholar
  19. Sikes, E. K. and Wigglesworth, V. B. (1931) The hatching of insects from the egg, and the appearance of air in the tracheal system. Quart. J. Micr. Sci., 74, 165–192.Google Scholar
  20. Stacey, M. (1943) Mucopolysaccharides and related substances. Chem. & Ind., 62, 110–112.CrossRefGoogle Scholar
  21. Wigglesworth, V. B. (1929) Digestion in the tsetse-fly: a study of structure and function. Parasitology, 21, 288–321.CrossRefGoogle Scholar
  22. Wigglesworth, V. B. (1930a) The formation of the peritrophic membrane in insects, with special reference to the larvae of mosquitoes. Quart. J. Micr. Sci., 73, 593–616.Google Scholar
  23. Wigglesworth, V. B. (1930b) A theory of tracheal respiration in insects. Proc. Roy. Soc. B., 106, 229–250.CrossRefGoogle Scholar
  24. Wigglesworth, V. B. (1931a) The physiology of excretion in a blood-sucking insect, Rhodnius prolixus (Hemiptera, Reduviidae). J. Exp. Biol., 8, 411–451.Google Scholar
  25. Wigglesworth, V. B. (1931b) The extent of air in the tracheoles of some terrestrial insects. Proc. Roy. Soc. B., 109, 354–359.CrossRefGoogle Scholar
  26. Wigglesworth, V. B. (1932) On the function of the so-called ‘rectal glands’ of insects. Quart J. Micr. Sci., 75, 131–150.Google Scholar
  27. Wigglesworth, V. B. (1933a) The effect of salts on the anal gills of the mosquito larva. J. Exp. Biol., 10, 1–15.Google Scholar
  28. Wigglesworth, V. B. (1933b) The function of the anal gills of the mosquito larva. J. Exp. Biol., 10, 16–26.Google Scholar
  29. Wigglesworth, V. B. (1933c) The physiology of the cuticle and of ecdysis in Rhodnius prolixus (Triatomidae, Hemiptera); with special reference to the function of the oenocytes and of the dermal glands. Quart. J. Micr. Sci., 76, 270–318.Google Scholar
  30. Wigglesworth, V. B. (1934) The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and ‘metamorphosis’. Quart. J. Micr. Sci., 77, 191–222.Google Scholar
  31. Wigglesworth, V. B. (1935) The regulation of respiration in the flea. Xenopsylla cheopis, Roths. (Pulicidae). Proc. Roy. Soc. B., 118, 397–419.CrossRefGoogle Scholar
  32. Wigglesworth, V. B. (1936) The function of the corpus allatum in the growth and reproduction of Rhodnius prolixus (Hemiptera). Quart. J. Micr. Sci., 79, 91–121.Google Scholar
  33. Wigglesworth, V. B. (1937) Wound healing in an insect (Rhodnius prolixus Hemiptera). J. Exp. Biol., 14, 364–381.Google Scholar
  34. Wigglesworth, V. B. (1938a) The regulation of osmotic pressure and chloride concentration in the haemolymph of mosquito larvae. J. Exp. Biol., 15, 235–247.Google Scholar
  35. Wigglesworth, V. B. (1938b) The absorption of fluid from the tracheal system of mosquito larvae at hatching and moulting. J. Exp. Biol., 15, 248–254.Google Scholar
  36. Wigglesworth, V. B. (1939) The Principles of Insect Physiology. London: Methuen.Google Scholar
  37. Wigglesworth, V. B. (1940a) Local and general factors in the development of ‘pattern’ in Rhodnius prolixus (Hemiptera). J. Exp. Biol., 17, 180–200.Google Scholar
  38. Wigglesworth, V. B. (1940b) The determination of characters at metamorphosis in Rhodnius prolixus (Hemiptera). J. Exp. Biol., 17, 201–222.Google Scholar
  39. Wigglesworth, V. B. (1942a) The storage of protein, fat, glycogen and uric acid in the fat body and other tissues of mosquito larvae. J. Exp. Biol., 19, 56–77.Google Scholar
  40. Wigglesworth, V. B. (1942b) The significance of ‘chromatic droplets’ in the growth of insects. Quart. J. Micr. Sci., 83, 141–152.Google Scholar
  41. Wigglesworth, V. B. (1943) The fate of haemoglobin in Rhodnius prolixus (Hemiptera) and other blood-sucking arthropods. Proc. Roy. Soc. B., 131, 313–339.CrossRefGoogle Scholar
  42. Wigglesworth, V. B. (1945a) Transpiration through the cuticle of insects. J. Exp. Biol., 21, 97–114.Google Scholar
  43. Wigglesworth, V. B. (1945b) Growth and Form in an insect. Essays on Growth and Form. Oxford University Press.Google Scholar
  44. Wigglesworth, V. B. (1947) The epicuticle in an insect, Rhodnius prolixus (Hemiptera). Proc. Roy. Soc. B., 134, 163–181.CrossRefGoogle Scholar
  45. Wigglesworth, V. B. (1948a) The role of the cell in determination. I. Growth changes in Rhodnius prolixus. Symposia Soc. Exp. Biol., 2, 1–16.Google Scholar
  46. Wigglesworth, V. B. (1948b) The structure and deposition of the cuticle in the adult mealworm, Tenebriomolitor L. (Coleoptera). Quart. J. Micr. Sci., 89, 197–217.Google Scholar
  47. Wigglesworth, V. B. (1948c) The functions of the corpus allatum in Rhodnius prolixus (Hemiptera). J. Exp. Biol., 25, 1–14.Google Scholar
  48. Wigglesworth, V. B. (1975) Incorporation of lipid into the epicuticle of Rhodnius (Hemiptera). J. Cell Sci., 19, 459–485.Google Scholar
  49. Wigglesworth, V. B. and Gillett, J. D. (1936) The loss of water during ecdysis in Rhodnius prolixus Stål. (Hemiptera). Proc. R. Ent. Soc. Lond. A., 11, 104–107.Google Scholar
  50. Wigglesworth, V. B. and Salpeter, M. M. (1962) Histology of the Malpighian tubules in Rhodnius prolixus Stål. (Hemiptera). J. Ins. Physiol., 8, 299–307.CrossRefGoogle Scholar
  51. Williams, C. M. (1946) Physiology of insect diapause: the role of the brain in the production and termination of pupal dormancy in the giant silkworm, Platysamia cecropia. Biol. Bull. Woods Hole, 90, 234–243.CrossRefGoogle Scholar
  52. Williams, C. M. (1947) Physiology of insect diapause. II. Interaction between the pupal brain and prothoracic glands in the metamorphosis of the giant silkworm, Platysamia cecropia. Biol. Bull. Woods Hole, 93, 89–98.CrossRefGoogle Scholar
  53. Williams, C. M. (1948) Physiology of insect diapause. III. The prothoracic glands in the Cecropia silkworm, with special reference to their significance in embryonic and postembryonic development. Biol. Bull. Woods Hole, 94, 60–65.CrossRefGoogle Scholar

Copyright information

© V. B. Wigglesworth 1976

Authors and Affiliations

  • Vincent B. Wigglesworth
    • 1
  1. 1.Agricultural Research Council Unit of Insect PhysiologyUniversity of CambridgeUSA

Personalised recommendations