Mammalian Nucleotide Excision Repair

  • Hanspeter Naegeli
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Mammalian nucleotide excision repair and the analog process initiated in bacteria by (A)BC excinuclease share many basic biochemical steps including DNA damage recognition, dual incision, oligonucleotide excision, repair synthesis and ligation (see Fig. 5.1). The similarities of mammalian nucleotide excision repair to the Escherichia coli system include the following:1–7
  1. (1)

    one multisubunit excision nuclease removes all types of base adducts,

  2. (2)

    DNA damage is released as a component of oligonucleotide segments,

  3. (3)

    the nucleotide excision repair reaction is strictly ATP-dependent,

  4. (4)

    transcribed strands of active genes are preferentially repaired (see chapter 9).



Proliferate Cell Nuclear Antigen Excision Repair Nucleotide Excision Repair Xeroderma Pigmentosum Cyclobutane Pyrimidine Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sancar A. DNA excision repair. Annu Rev Biochem 1996; 65:43–81.CrossRefGoogle Scholar
  2. 2.
    Tanaka K, Wood RD. Xeroderma pigmentosum and nucleotide excision repair. Trends Biochem Sci 1994; 19:83–86.CrossRefGoogle Scholar
  3. 3.
    Wood RD. DNA repair in eukaryotes. Annu Rev Biochem 1996; 65:135–167.CrossRefGoogle Scholar
  4. 4.
    Hoeijmakers JHJ. Nucleotide excision repair II: from yeast to mammals. Trends Genet 1993; 9:211–217.CrossRefGoogle Scholar
  5. 5.
    Sancar A. Excision repair in mammalian cells. J Biol Chem 1995; 270:15915–15918.Google Scholar
  6. 6.
    Mu D, Hsu DS, Sancar A. Reaction mechanism of human DNA repair excision nuclease. J Biol Chem 1996; 271:8285–8294.CrossRefGoogle Scholar
  7. 7.
    Wood RD, Robins P, Lindahl T. Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell 1988; 53:97–106.CrossRefGoogle Scholar
  8. 8.
    Mu D, Park C-H, Matsunaga T et al. Reconstitution of human DNA repair excinuclease in a highly defined system. J Biol Chem 1995; 270:2415–2418.CrossRefGoogle Scholar
  9. 9.
    Huang J-C, Svoboda DL, Reardon JT et al. Human nucleotide excision nuclease removes thymine dimers from DNA by the 22nd phosphodiester bond 5′ and the 6th phosphodiester bond 3′ to the photodimer. Proc Natl Acad Sci USA 1992; 89:3664–3668.CrossRefGoogle Scholar
  10. 10.
    Hansson J, Munn M, Rupp WD et al. Localization of DNA repair synthesis by human cell extracts to a short region at the site of a lesion. J Biol Chem 1989; 264:21788–21792.Google Scholar
  11. 11.
    Moggs JG, Yarema KJ, Essigmann JM et al. Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3-intrastrand d(GpTpG)-cisplatin ad-duct. J Biol Chem 1996; 271:7177–7186.CrossRefGoogle Scholar
  12. 12.
    Huang J-C, Hsu DS, Kazantsev A et al. Substrate spectrum of human excinuclease: repair of abasic sites, methylated bases, mismatches, and bulky ad-ducts. Proc Natl Acad Sci USA 1994; 91:12213–12217.CrossRefGoogle Scholar
  13. 13.
    Shivji MKK, Kenny MK, Wood RD. Proliferating cell nuclear antigen is required for DNA excision repair. Cell 1992; 69:367–374.CrossRefGoogle Scholar
  14. 14.
    Schaeffer L, Roy R, Humbert S et al. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 1993; 260:58–63.CrossRefGoogle Scholar
  15. 15.
    Schiestl RH, Prakash S. RADIO, an excision repair gene of Saccharomyces cere-visiae, is involved in the RAD1 pathway of mitotic recombination. Mol Cell Biol 1990; 10:2485–2491.Google Scholar
  16. 16.
    Cleaver JE. Defective repair replication of DNA in xeroderma pigmentosum. Nature 1968; 218:652–656.CrossRefGoogle Scholar
  17. 17.
    Lehmann AR, Bootsma D, Clarkson SG et al. Nomenclature of human DNA repair genes. Mutat Res 1994; 315:41–42.CrossRefGoogle Scholar
  18. 18.
    Fornace AJ, Kohn KW, Kann HE. DNA single-strand breaks during repair of UV damage in human fibroblasts and abnormalities or repair in xeroderma pig-mentosum. Proc Natl Acad Sci USA 1976; 73:39–43.CrossRefGoogle Scholar
  19. 19.
    Lehmann AR, Kirk-Bell S, Arlett CF et al. Xeroderma pigmentosum with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc Natl Acad Sci USA 1975; 72:219–223.CrossRefGoogle Scholar
  20. 20.
    Thompson LH. Somatic cell genetics approach to dissecting mammalian DNA repair. Environ Mol Mutagen 1989; 14:264–281.CrossRefGoogle Scholar
  21. 21.
    Westerveld A, Hoeijmakers JH, van Duin M et al. Molecular cloning of a human DNA repair gene. Nature 1984; 310:425–429.CrossRefGoogle Scholar
  22. 22.
    Weber CA, Salazar EP, Stewart SA et al. ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J 1990; 9:1437–1447.Google Scholar
  23. 23.
    Flejter WL, McDaniel LD, Johns D et al. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: involvement of the human ERCC2 DNA repair gene. Proc Natl Acad Sci USA 1992; 89:261–265.CrossRefGoogle Scholar
  24. 24.
    Weeda G, Van Ham RCA, Vermeulen W et al. A presumed DNA helicases encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne’s syndrome. Cell 1990; 62:777–791.CrossRefGoogle Scholar
  25. 25.
    Biggerstaff M, Szymkowski DE, Wood RD. Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. EMBO J 1993; 12:3685–3692.Google Scholar
  26. 26.
    van Vuuren AJ, Appeldoorn E, Odijk H et al. Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F. EMBO J 1993; 12:3693:3701.Google Scholar
  27. 27.
    Sijbers AM, de Laat WL, Ariza RR et al. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 1996; 86:811–822.CrossRefGoogle Scholar
  28. 28.
    Scherly D, Nouspikel T, Corlet J et al. Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature 1993: 363:182–185.CrossRefGoogle Scholar
  29. 29.
    O’Donovan A, Wood RD. Identical defect in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5. Nature 1993; 363:185–188.CrossRefGoogle Scholar
  30. 30.
    Troelstra C, Van Gool A, De Wit J et al. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 1992; 71:1–15.CrossRefGoogle Scholar
  31. 31.
    Itoh T, Shiomi T, Harada Y et al. Rodent complementation group 8 (ERCC8) corresponds to Cockayne syndrome complementation group A. Mutat Res 1996; 362:167–174.CrossRefGoogle Scholar
  32. 32.
    Tanaka K, Miura N, Satokata I et al. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc finger domain. Nature 1990; 348:73–76.CrossRefGoogle Scholar
  33. 33.
    Legerski R, Peterson C. Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature 1992; 359:70–73.CrossRefGoogle Scholar
  34. 34.
    Jones CJ, Wood RD. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry 1993; 32:12096–12104.CrossRefGoogle Scholar
  35. 35.
    Eker APM, Vermeulen W, Miura N et al. Xeroderma pigmentosum group A correcting protein from calf thymus. Mutat Res 1992; 274:211–224.CrossRefGoogle Scholar
  36. 36.
    Asashina H, Kuraoka I, Shirakawa M et al. The XPA protein is a zinc metalloprotein with an ability to recognize various kinds of DNA damage. Mutat Res 1994; 315:229–237.CrossRefGoogle Scholar
  37. 37.
    Miyamoto I, Miura N, Niwa H et al. Mutational analysis of the structure and function of the xeroderma pigmentosum group A complementing protein: identification of essential domains for nuclear localization and DNA excision repair. J Biol Chem 1992; 267: 12182–12187.Google Scholar
  38. 38.
    Van Houten B. Nucleotide excision repair in Escherichia coli. Microbiol Rev 1990; 54:18–51.Google Scholar
  39. 39.
    Tchou J, Michaels ML, Miller JH et al. Function of the zinc finger in Escherichia coli Fpg protein. J Biol Chem 1993; 268:26738–26744.Google Scholar
  40. 40.
    Jones JS, Weber S, Prakash L. The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence. Nucleic Acids Res 1988; 16:7119–7131.CrossRefGoogle Scholar
  41. 41.
    Gradwohl G, Menissier de Murcia JM, Molinete M et al. The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for singlestranded breaks in DNA. Proc Natl Acad Sci USA 1990; 87:2990–2994.CrossRefGoogle Scholar
  42. 42.
    He Z, Henricksen LA, Wold MS et al. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 1995; 374:566–568.CrossRefGoogle Scholar
  43. 43.
    Matsuda T, Saijo M, Kuraoka I et al. DNA repair protein XPA binds replication protein A (RPA). J Biol Chem 1995; 270:4152–4157.CrossRefGoogle Scholar
  44. 44.
    Li L, Lu X, Peterson CA et al. An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Mol Cell Biol 1995; 15:5396–5402.Google Scholar
  45. 45.
    Li L, Elledge SJ, Peterson CA et al. Specific association between the human DNA repair proteins XPA and ERCC1. Proc Natl Acad Sci USA 1994; 91:5012–5016.CrossRefGoogle Scholar
  46. 46.
    Li L, Peterson CA, Legerski RF. Mutations in XPA that prevent association with ERCC1 are defective in nucleotide excision repair. Mol Cell Biol 1995; 15:1993–1998.Google Scholar
  47. 47.
    Park CH, Sancar A. Formation of a ternary complex by human XPA, ERCC1 and ERCC4(XPF) excision repair proteins. Proc Natl Acad Sci USA 1994; 91:5017–5021.CrossRefGoogle Scholar
  48. 48.
    Nagai A, Saijo M, Kuraoka I et al. Enhancement of damage-specific DNA binding of XPA by interaction with the ERCC1 DNA repair protein. Biochem Biophys Res Comm 1995; 211:960–966.CrossRefGoogle Scholar
  49. 49.
    Park CH, Mu D, Reardon JT et al. The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J Biol Chem 1995; 270:4896–4902.CrossRefGoogle Scholar
  50. 50.
    Challberg MD, Kelly TJ. Animal virus DNA replication. Annu Rev Biochem 1989; 58:671–717.CrossRefGoogle Scholar
  51. 51.
    Hurwitz J, Dean FB, Kwong AD et al. The in vitro replication of DNA containing the SV40 origin. J Biol Chem 1990; 265:18043–18046.Google Scholar
  52. 52.
    Longhese MP, Plevani P, Lucchini G. Replication factor A is required in vivo for DNA replication, repair, and recombination. Mol Cell Biol 1994; 14:7884–7890.Google Scholar
  53. 53.
    Coverley D, Kenny M, Munn M et al. Requirement for the replication protein SSB in human DNA excision repair. Nature 1991; 349:538–541.CrossRefGoogle Scholar
  54. 54.
    Heyer W-D, Rao MR, Erdile LF et al. An essential Saccharomyces cerevisiae singlestranded DNA binding protein is homologous to the large subunit of human RP-A. EMBO J 1990; 9:2321–2329.Google Scholar
  55. 55.
    Li R, Botchan M. The acidic transcriptional activation domain of VP16 and p53 bind the cellular RPA and stimulate in vitro BPV-1 DNA replication. Cell 1993; 73:1207–1221.CrossRefGoogle Scholar
  56. 56.
    Gomes XV, Wold MS. Structural analysis of human replication protein A. J Biol Chem 1995; 270:4534–4543.CrossRefGoogle Scholar
  57. 57.
    Wobble CR, Weissbach L, Borowiec JA et al. Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc Natl Acad Sci USA 1987; 84:1834–1838.CrossRefGoogle Scholar
  58. 58.
    Fairman MP, Stillman B. Cellular factors required for multiple stages of SV40 DNA replication in vitro. EMBO J. 1988; 7:1211–1218.Google Scholar
  59. 59.
    Wold MS, Kelly T. Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc Natl Acad Sci USA 1988; 85:2523–2527.CrossRefGoogle Scholar
  60. 60.
    Lin Y-L, Clark C, Keshav KF et al. Dissection of functional domains of the human DNA replication protein complex replication protein A. J Biol Chem 1996; 271:17190–17198.CrossRefGoogle Scholar
  61. 61.
    Matsunaga T, Park C-H, Bessho T et al. Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem 1996; 271:11047–11050.CrossRefGoogle Scholar
  62. 62.
    Toulmé JJ, Behmoaras T, Guignes M et al. Recognition of chemically damaged DNA by the gene 32 protein from bacteriophage T4. EMBO J. 1983; 2:505–510.Google Scholar
  63. 63.
    Toulmé F, Hélène C, Fuchs RPP et al. Binding of a tryptophan-containing peptide (lysyltryptophyllysine) to deoxyribonucleic acid modified by 2(N-acetoxyacetylamino)fluorene. Biochemistry 1980; 19:870–875.CrossRefGoogle Scholar
  64. 64.
    Drapkin R, Reardon JT, Ansari A et al. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 1994; 368:769–772.CrossRefGoogle Scholar
  65. 65.
    Hwang JR, Moncollin V, Vermeulen W et al. A 3′→15′ XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both repair and transcription. J Biol Chem 1996; 271:15898–15904.CrossRefGoogle Scholar
  66. 66.
    Feaver WJ, Svejstrup JQ, Bardwell L et al. Dual roles of a multiprotein complex from Saccharomyces cerevisiae in transcription and DNA repair. Cell 1993; 75:1379–1387.CrossRefGoogle Scholar
  67. 67.
    Reardon JT, Ge H, Gibbs E et al. Isolation and characterization of two human transcription factor IIH (TFIIH)-related complexes: ERCC2/CAK and TFIIH*. Proc Natl Acad Sci USA 1996; 93:6482–6487.CrossRefGoogle Scholar
  68. 68.
    Adamczewski JP, Rossignol M, Tassan JP et al. MAT1, cdk7 and cyclin H form a kinase complex which is UV-light sensitive upon association with TFIIH. EMBO J 1996; 15:1877–1884.Google Scholar
  69. 69.
    Drapkin R, Reinberg D. The multifunctional TFIIH complex and transcriptional control. Trends Biochem Sci 1994; 19:504–508.CrossRefGoogle Scholar
  70. 70.
    Serizawa H, Conaway RC, Conaway JW. Multifunctional RNA polymerase II initiation factor δ from rat liver. J Biol Chem 1993; 268:17300–17308.Google Scholar
  71. 71.
    Roy R, Adamczewski JP, Seroz T et al. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 1994; 79:1093–1101.CrossRefGoogle Scholar
  72. 72.
    Svejstrup JQ, Wang Z, Feaver WJ et al. Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell 1995; 80:21–28.CrossRefGoogle Scholar
  73. 73.
    Goodrich JA, Tjian R. Transcription factor IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 1994; 77:145–156.CrossRefGoogle Scholar
  74. 74.
    Lu H, Zawel L, Fisher L et al. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature 1992; 358:641–645.CrossRefGoogle Scholar
  75. 75.
    Shiekhattar R, Mermelstein F, Fisher R et al. Cdk-activating kinase (CAK) complex is a component of human transcription factor IIH. Nature 1995; 374:283–287.CrossRefGoogle Scholar
  76. 76.
    Fesquet D, Labbé J-C, Derancourt J et al. The MO15 gene encodes the catalytic subunit of a protein kinase that inactivates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thrl61 and its homologues. EMBO J 1993; 12:3111–3121.Google Scholar
  77. 77.
    Mäkelä TP, Tassan JP, Nigg EA et al. A cyclin associated with the CDK-activating kinase MO15. Nature 1994; 371:254–257.CrossRefGoogle Scholar
  78. 78.
    Solomon MJ. The function(s) of CAK, the p34cdc2-activating kinase. Trends Biochem Sci 1994; 19:496–500.CrossRefGoogle Scholar
  79. 79.
    Masutani C, Sugusawa K, Yanagisawa J et al. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homolog of yeast RAD23. EMBO J 1994; 13:1831–1843.Google Scholar
  80. 80.
    van der Speck PJ, Eker A, Rademakers S et al. XPC and human homologs of RAD23: intracellular localization and relationship to other nucleotide excision repair complexes. Nucleic Acids Res 1996; 24:2551–2559.CrossRefGoogle Scholar
  81. 81.
    Reardon JT, Mu D, Sancar A. Overproduction, purification, and characterization of the XPC subunit of the human DNA repair excision nuclease. J Biol Chem 1996; 271:19451–19456.CrossRefGoogle Scholar
  82. 82.
    Finley D, Bartel B, Varshavsky A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 1989; 338:394–401.CrossRefGoogle Scholar
  83. 83.
    Guzder SN, Bailly V, Sung P et al. Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14. J Biol Chem 1995; 270:8385–8388.CrossRefGoogle Scholar
  84. 84.
    Venema J, van Hoffen A, Karcagi V et al. Xeroderma pigmentosum complementation group C cells remove pyrimi-dine dimers selectively from the transcribed strand of active genes. Mol Cell Biol 1991;11:4128–4134.Google Scholar
  85. 85.
    Naegeli H. Mechanisms of DNA damage recognition in mammalian nucleotide excision repair. FASEB J 1995; 9:1043–1050.Google Scholar
  86. 86.
    Hoeijmakers JHJ. Human nucleotide excision repair syndromes: molecular clues to unexpected intricacies. Europ J Cancer 1994; 30A:1912–1921.CrossRefGoogle Scholar
  87. 87.
    Park CH, Bessho T, Matsunaga T et al. Purification and characterization of the XPF-ERCC1 complex of human DNA repair excision nuclease. J Biol Chem 1995; 270:22657–22660.CrossRefGoogle Scholar
  88. 88.
    O’Donovan, Davies AA, Moggs JG et al. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 1994; 371:432–435.CrossRefGoogle Scholar
  89. 89.
    Iyer N, Reagan MS, Wu KJ et al. Interactions involving the human RNA poly-merase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein. Biochemistry 1996; 35:2157–2167.CrossRefGoogle Scholar
  90. 90.
    Matsunaga T, Mu D, Park C-H. Human DNA repair excision nuclease. Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCCl antibodies. J Biol Chem 1995; 270:20862–20869.CrossRefGoogle Scholar
  91. 91.
    Aboussekhra A, Biggerstaff M, Shivji MKK et al. Mammalian DNA nucleotide excision repair reconstituted with purified components. Cell 1995; 80:859CrossRefGoogle Scholar
  92. 92.
    Shivji MKK, Podust VN, Hübscher U et al. Nucleotide excision repair DNA synthesis by DNA polymerase e in the presence of PCNA, RFC, and RPA. Biochemistry 1995; 34:5011–5017.CrossRefGoogle Scholar
  93. 93.
    Sancar A, Hearst JE. Molecular matchmakers. Science 1993; 259:1415–1420.CrossRefGoogle Scholar
  94. 94.
    Nichols AF, Sancar A. Purification of PCNA as a nucleotide excision repair protein. Nucleic Acids Res 1992; 20:2441–2446.CrossRefGoogle Scholar
  95. 95.
    Klein JC, Bleeker MJ, Roelen HCPF et al. Role of nucleotide excision repair in processing of O4-alkylthymines in human cells. J Biol Chem 1994; 269:25521–25528.Google Scholar
  96. 96.
    Saffhill R, Margison GP, O’Connor PJ, Mechanisms of carcinogenesis induced by alkylating agents. Biochim Biophys Acta 1985; 823:111–145.Google Scholar
  97. 97.
    Saffhill R. In vitro miscoding of alkylthymines with DNA and RNA polymerases. Chem Biol Interact 1985; 53:121–130.CrossRefGoogle Scholar
  98. 98.
    Singer B. O-alkyl pyrimidines in mutagenesis and carcinogenesis: occurrence and significance. Cancer Res 1986; 46:4879–4885.Google Scholar
  99. 99.
    Mitchell DL, Nairn RS. The biology of the (6-4) photoproduct. Photochem Photobiol 1989; 49:805–819.CrossRefGoogle Scholar
  100. 100.
    Mitchell DL. The relative cytotoxicity of (6-4) photoproducts and cyclobutane pyrimidine dimers in mammalian cells. Photochem Photobiol 1988; 48:51–57.CrossRefGoogle Scholar
  101. 101.
    Franklin WA, Haseltine WA. The role of the (6-4) photoproduct in ultraviolet light-induced transition mutations in E. coli. Mutat Res 1986; 165:1–7.CrossRefGoogle Scholar
  102. 102.
    Zdzinicka MZ, Venema J, Mitchell DL et al. (6-4) Photoproducts and not cyclobutane pyrimidine dimers are the main UV-induced mutagenic lesion in Chinese hamster cells. Mutat Res 1992; 273:73–83.CrossRefGoogle Scholar
  103. 103.
    Treiber DK, Zhai X, Jantzen H-M et al. Cisplatin-DNA adducts are molecular decoys for the ribosomal RNA transcription factor hUBF (human upstream binding factor). Proc Natl Acad Sci USA 1994; 91:5672–5676.CrossRefGoogle Scholar
  104. 104.
    McLenigan M, Levine AS, Protic M. Differential expression of pyrimidine dimerbinding proteins in normal and UV light-treated vertebrate cells. Photochem Photobiol 1993; 57:655–662.CrossRefGoogle Scholar
  105. 105.
    Moranelli F, Lieberman MW. Recognition of chemical carcinogen-modified DNA by a DNA-binding protein. Proc Natl Acad Sci USA 1980; 77:3201–3205.CrossRefGoogle Scholar
  106. 106.
    Lenz J, Okenquist SA, LoSardo JE et al. Identification of a mammalian nuclear factor and human cDNA-encoded proteins that recognize DNA containing apurinic sites. Proc Natl Acad Sci USA 1990; 87:3396–3400.CrossRefGoogle Scholar
  107. 107.
    Rydberg B, Dosanjh MK, Singer B. Human cells contain protein specifically binding to a single 1,N 6-ethenoadenine in a DNA fragment. Proc Natl Acad Sci USA 1991; 88:6839–6842.CrossRefGoogle Scholar
  108. 108.
    Feldberg RS, Grossman L. A DNA binding protein from human placenta specific for ultraviolet-damaged DNA. Biochemistry 1976; 15:2402–2408.CrossRefGoogle Scholar
  109. 109.
    Feldberg RS, Lucas JL, Dannenberg A. A damage-specific DNA binding protein. J Biol Chem 1982; 257:6394–6401.Google Scholar
  110. 110.
    Chu G, Chang E. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 1988; 242:564–567.CrossRefGoogle Scholar
  111. 111.
    Hwang BJ, Chu G. Purification and characterization of a human protein that binds to damaged DNA. Biochemistry 1993; 32:1657–1666.CrossRefGoogle Scholar
  112. 112.
    Keeney S, Chang GJ, Linn S. Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J Biol Chem 1993; 268:21293–21300.Google Scholar
  113. 113.
    Keeney S, Eker APM, Brody T et al. Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage-binding protein. Proc Natl Acad Sci USA 1994; 91:4053–4056.CrossRefGoogle Scholar
  114. 114.
    Reardon JT, Nichols AF, Keeney S et al. Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition protein (UvrA) to the major ultraviolet photoproducts: T[c,s]T, T[t,s]T, T[6-4]T, and T[Dewar]T. J Biol Chem 1993; 268:21301–21308.Google Scholar
  115. 115.
    Treiber D, Chen Z, Essigmann J. An ultraviolet light-damaged DNA recognition protein absent in xeroderma pigmentosum group E cells binds selectively to pyrimidine (6-4) pyrimidone photoproducts. Nucleic Acids Res 1992; 20:5805–5810.CrossRefGoogle Scholar
  116. 116.
    Kazantsev A, Mu D, Nichols AF et al. Functional complementation of xeroderma pigmentosum complementation group E by replication protein A in an in vitro system. Proc Natl Acad Sci USA 1996; 93: 5014–5018.CrossRefGoogle Scholar
  117. 117.
    Echols H. Multiple DNA-protein interactions governing high-precision DNA interactions. Science 1986; 233:1050–1055.CrossRefGoogle Scholar
  118. 118.
    Bertrand-Burggraf E, Selby CP, Hearst JE et al. Identification of the different intermediates in the interaction of (A)BC excinuclease with its substrate by DNasel footprinting on two uniquely modified oligonucleotides. J Mol Biol 1991; 219:27–36.CrossRefGoogle Scholar
  119. 119.
    Huang J-C, Sancar A. Determination of minimum substrate size for human excinuclease. J Biol Chem 1994; 269:19034–19040.Google Scholar
  120. 120.
    Guzder SN, Sung P, Prakash L et al. Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome. J Biol Chem 1996; 271:8903–8910.CrossRefGoogle Scholar
  121. 121.
    Maldonado E, Shiekhattar R, Sheldon M et al. A human RNA polymerase II complex associated with SRB and DNA repair proteins. Nature 1996; 381:86–89.CrossRefGoogle Scholar
  122. 122.
    Lee S-H, Kim D-K, Drissi R. Human xeroderma pigmentosum group A protein interacts with human replication protein A and inhibits DNA replication. J Biol Chem 1995; 270:21800–21805.CrossRefGoogle Scholar
  123. 123.
    Matson SW, Kaiser-Rogers KA. DNA helicases. Annu Rev Biochem 1990; 59:289–329.CrossRefGoogle Scholar
  124. 124.
    Arai K-I, Low R, Kobori J et al. Mechanism of dnaB protein action. J Biol Chem 1981; 256:5273–5280.Google Scholar
  125. 125.
    Oh EY, Grossman L. Helicase properties of the Escherichia coli UvrAB protein complex. Proc Natl Acad Sci USA 1987; 84:3638–3642.CrossRefGoogle Scholar
  126. 126.
    Sancar A., Rupp WD. A novel repair enzyme: UVRABC excision of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell 1983; 33:249–260.CrossRefGoogle Scholar
  127. 127.
    Grossman L, Thiagalingam S. Nucleotide excision repair, a tracking mechanism in search of damage. J Biol Chem 1993; 268:16871–16874.Google Scholar
  128. 128.
    Oh EY, Grossman L. Characterization of the helicase activity of the Escherichia coli UvrAB protein complex. J Biol Chem 1989; 264:1336–1343.Google Scholar
  129. 129.
    Naegeli H, Bardwell L, Friedberg EC. The DNA helicase and adenosine triphosphatase activities of yeast Rad3 protein are inhibited by DNA damage. J Biol Chem 1992; 267:392–398.Google Scholar
  130. 130.
    Naegeli H, Bardwell L, Friedberg EC (1993) Inhibition of Rad3 DNA helicase activity by DNA adducts and abasic sites: implications for the role of a DNA helicase in damage-specific incision of DNA. Biochemistry 1993; 32:613–621.CrossRefGoogle Scholar
  131. 131.
    Naegeli H, Bardwell L, Harosh I et al. Substrate specificity of the Rad3 ATPase/ DNA helicase of Saccharomyces cerevisiae and binding of Rad3 protein to nucleic acids. J Biol Chem 1992; 267:7839–7844.Google Scholar
  132. 132.
    Naegeli H, Modrich P, Friedberg EC. The DNA helicase activity of Rad3 protein of Saccharomyces cerevisiae and helicase II of Escherichia coli are differentially inhibited by covalent and non-covalent DNA modifications. J Biol Chem 1993; 268:10386–10392.Google Scholar
  133. 133.
    Friedberg EC. Yeast genes involved in DNA repair processes: new looks on old faces. Mol Microbiol 1991; 5:2303–2310.CrossRefGoogle Scholar
  134. 134.
    Lesser DR, Kurpiewski MR, Waters T et al. Facilitated distortion of the DNA site enhances EcoRI endonuclease-DNA recognition. Proc Natl Acad Sci USA 1993; 90:7548–7552.CrossRefGoogle Scholar
  135. 135.
    Kim Y, Grable JC, Love R et al. Refinement of EcoRl endonuclease crystal structure: a revised protein chain tracing. Science 1990; 249:1307–1309.CrossRefGoogle Scholar
  136. 136.
    Draper DE. Protein-DNA complexes: the cost of recognition. Proc Natl Acad Sci USA 1993; 90:7429–7430.CrossRefGoogle Scholar
  137. 137.
    Kim Y, Geiger JH, Hahn S. Crystal structure of a yeast TBP/TATA-box complex. Nature 1993; 365:512–520.CrossRefGoogle Scholar
  138. 138.
    Erie DA, Yang G, Schultz HC et al. DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity. Science 1994; 266:1562–1566.CrossRefGoogle Scholar
  139. 139.
    Sun D, Hurley LH. Cooperative binding of the 21-base-pair repeats of the SV40 viral early promoter by Spl. Biochemistry 1994; 33:9578–9587.CrossRefGoogle Scholar
  140. 140.
    Shi Q, Thresher R, Sancar A et al. An electron microscopic study of (A)BC excinuclease. J Mol Biol 1992; 226:425–432.CrossRefGoogle Scholar
  141. 141.
    Burns JL, Guzder SN, Sung P et al. An affinity of human replication protein A for ultraviolet-damaged DNA. J Biol Chem 1996; 271:11607–11610.CrossRefGoogle Scholar
  142. 142.
    Sung P, Watkins JF, Prakash L et al. Negative superhelicity promotes ATP-dependent binding of yeast Rad3 protein to ultraviolet-damaged DNA. J Biol Chem 1994; 269:8303–8308.Google Scholar
  143. 143.
    Kim J-K, Choi B-S. The solution structure of DNA duplex-decamer containing the (6-4) photoproduct of thymidylyl(3′→5′)thymidine by NMR and relaxation matrix refinement. Eur J Biochem 1995; 228:849–854.CrossRefGoogle Scholar

Copyright information

© R.G. Landes Company 1997

Authors and Affiliations

  • Hanspeter Naegeli
    • 1
  1. 1.Institute of Pharmacology and ToxicologyUniversity of Zürich-TierspitalZürichSwitzerland

Personalised recommendations