The Role of HLA-DM in Class II Antigen Presentation

  • Tom Cotner
  • Donald Pious


The major histocompatibility complex (MHC) class I and class II molecules serve as peptide receptors which present antigenic peptide complexes to T cells. The presentation of antigen to T cells requires that the antigens first be processed prior to presentation. Peptide binding occurs intracellularly and MHC class I and class II molecules bind peptides derived from different cellular locations: peptides derived from mainly cytoplasmic sources bind to class I whereas proteins taken up from the extracellular environment are degraded and bind to class II.


Major Histocompatibility Complex Class Peptide Binding Major Histocompatibility Complex Molecule Endocytic Pathway Invariant Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Monaco JJ. Genes in the MHC that may affect antigen processing. Curr Opin in Immunol 1992; 4: 70–73.CrossRefGoogle Scholar
  2. 2.
    Fling SP, Arp B, Pious D. HLA-DMA and -DMB genes are both required for MHC class II/peptide complex formation in antigen-presenting cells. Nature 1994; 368: 554–558.CrossRefGoogle Scholar
  3. 3.
    Morris P, Shaman J, Attaya M et al. An essential role for HLA-DM in antigen presentation by class II major histocompatibility molecules. Nature 1994; 368: 551–554.CrossRefGoogle Scholar
  4. 4.
    Spies T, Breshnahan M, Bahram S et al. A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway. Nature 1990; 348: 744–747.CrossRefGoogle Scholar
  5. 5.
    Spies T, DeMars R. Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter. Nature 1991; 351: 323–324.CrossRefGoogle Scholar
  6. 6.
    Kelly A, Powis SH, Kerr LA et al. Assembly and function of the two ABC transporter proteins encoded in the human major histocompatibility complex. Nature 1992; 355; 641–644.CrossRefGoogle Scholar
  7. 7.
    Cho S, Attaya M, Monaco JJ. New class II-like genes in the murine MHC. Nature 1991; 353: 573–576.CrossRefGoogle Scholar
  8. 8.
    Kelly AP, Monaco JJ, Cho S et al. A new human class II related locus, DM. Nature 1991; 353: 571–573.CrossRefGoogle Scholar
  9. 9.
    Sanderson F, Kleijmeer MJ, Kelly A et al. Accumulation of HLA-DM, a regulator of antigen presentation, in MHC class II compartments. Science 1994; 266: 1566–1569.CrossRefGoogle Scholar
  10. 10.
    Kovats S, Drover S, Marshall WH et al. Coordinate defects in human histocompatibility leukocyte antigen class II expression and antigen presentation in bare lymphocyte syndrome. J Exp Med 1994; 179: 2017–2022.CrossRefGoogle Scholar
  11. 11.
    Radley E, Alderton RP, Kelly A et al. Genomic organization of HLA-DMA and HLA-DMB. J Biol Chem 1994; 269: 18834–18838.Google Scholar
  12. 12.
    Shaman J, VonScheven E, Morris P et al. Analysis of HLA-DMB mutants and DMB genomic structure. Immunogenetics 1995; 41: 117–24.CrossRefGoogle Scholar
  13. 13.
    Kjer-Nielsen L, Perera JD, Boyd LF et al. The extracellular domains of MHC class II molecules determine their processing requirements for antigen presentation. J Immunol 1990; 144: 2915–2924.Google Scholar
  14. 14.
    Denzin LK, Robbins NF, Carboy-Newcomb C et al. Assembly and intracellular transport of HLA-DM and correction of the class II antigen-processing defect in T2 cells. Immunity 1994; 1: 1–20.CrossRefGoogle Scholar
  15. 15.
    Mellins E, Smith L, Arp B et al. Defective processing and presentation of exogenous antigens in mutants with normal HLA class II genes. Nature 1990; 343: 71–74.CrossRefGoogle Scholar
  16. 16.
    Mellins E, Kempin S, Smith L et al. A gene required for class II restricted antigen presentation maps to the major histocompatibility complex. J Exp Med 1991; 174: 1607–1615.CrossRefGoogle Scholar
  17. 17.
    Riberdy JM, Newcomb JR, Surman MJ et al. HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides. Nature 1992; 360: 474.CrossRefGoogle Scholar
  18. 18.
    Sette A, Ceman S, Kubo RT. Invariant chain peptides in most HLA-DR molecules of an antigen-processing mutant. Science 1992; 258: 1801–1804.CrossRefGoogle Scholar
  19. 19.
    Monji T, McCormack AL, Yates JR et al. Invariant-cognate peptide exchange restores class II dimer stability in HLA-DM mutants. J Immunol 1994; 153: 4468–4477.Google Scholar
  20. 20.
    Matthews CR. The final, rate-limiting steps in protein folding. Ann Rev Biochem 1993; 62: 653–683.CrossRefGoogle Scholar
  21. 21.
    Elliott EA, Drake JR, Amigorena S et al. The invariant chain is required for intracellular transport and function of major histocompatibility cornplex class II molecules. J Exp Med 1994; 180: 681–694.CrossRefGoogle Scholar
  22. 22.
    Roche PA, Cresswell P. Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding Nature 1990; 345: 615–618.Google Scholar
  23. 23.
    Lotteau V, Teyton L, Peleraux A et al. Intracellular transport of class II molecules directed by invariant chain. Nature 1990; 348: 600–604.CrossRefGoogle Scholar
  24. 24.
    Lamb CA, Yewdell JW, Bennink JR et al. Invariant chain targets HLA class II molecules to acidic endosomes containing internalized influenza virus. Proc Natl Acad Sci USA 1991; 88: 5998–6002.CrossRefGoogle Scholar
  25. 25.
    Maric MA, Taylor MD, Blum JS. Endosomal aspartic proteinases are required for invariant-chain processing. Proc Natl Acad Sci USA 1994; 91: 2171–2175.CrossRefGoogle Scholar
  26. 26.
    Mellins E, Cameron P, Amaya M et al. A mutant human histocompatibility leukocyte antigen DR molecule associated with invariant chain peptides. J Exp Med 1994; 179: 541–549.CrossRefGoogle Scholar
  27. 27.
    Sloan VS, Cameron P, Porter G et al. HLA-DM induces the dissociation of a subset of peptides from HLA-DR. Nature 1995; 375: 802–806.CrossRefGoogle Scholar
  28. 28.
    Tulp A, Verwoerd D, Dobberstein B et al. Isolation and characterization of the intracellular MHC class II compartment. Nature 1994; 369: 120–126.CrossRefGoogle Scholar
  29. 29.
    Karlsson L, P’eleraux A, Lindstedt R et al. Reconstitution of an operational MHC class II compartment in nonantigen-presenting cells. Science 1994; 266: 1569–1573.CrossRefGoogle Scholar
  30. 30.
    Amigorena S, Drake JR, Webster P et al. Transient accumulation of new class II MHC molecules in a novel endocytic compartment in B lymphocytes. Nature 1994; 369: 113–120.CrossRefGoogle Scholar
  31. 31.
    West MA, Lucocq JM, Watts C. Antigen processing and class II MHC peptide-loading compartments in human B-lymphoblastoid cells. Nature 1994; 369: 147–151.CrossRefGoogle Scholar
  32. 32.
    Qiu Y, Xu X, Wandinger-Ness A et al. Separation of subcellular compartments containing distinct functional forms of MHC class II. J Cell Biol 1994; 125: 595–605.CrossRefGoogle Scholar
  33. 33.
    Harding CV, Geuze HJ. Immunogenic peptides bind to class II MHC molecules in an early lysosomal compartment. J Immunol 1993; 151: 3988–3998.Google Scholar
  34. 34.
    Rudensky AY, Maric M, Eastman S et al. Intracellular assembly and transport of endogenous peptide-MHC class II complexes. Immunity 1994; 1: 585–594.CrossRefGoogle Scholar
  35. 35.
    Peters PJ, Neefjes JJ, Corscnot V et al. Segregation of MHC class II molecules from MHC class I molecules in the Golgi complex for transport to lysosomal compartments. Nature 1991; 349: 669–656.CrossRefGoogle Scholar
  36. 36.
    Benaroch P, Mamadi Y, Raposo G et al. How MHC class II molecules reach the endocytic pathway. EMBO J 1995; 14: 37–49.Google Scholar
  37. 37.
    Sadegh-Nasseri S, Germain RN. How MHC class II molecules work: peptide-dependent completion of protein folding. Immunol Today 1992; 13: 43–47.CrossRefGoogle Scholar
  38. 38.
    Carrington M, Yeager M, Mann D. Characterization of HLA-DMB polymorphism. Immunogenetics 1993; 38: 446–449.CrossRefGoogle Scholar
  39. 39.
    Sanderson F, Powis SH, Kelly AP et al. Limited polymorphism in HLA-DM does not involve the peptide binding groove. Immunogenetics 1994; 39: 56–58.CrossRefGoogle Scholar
  40. 40.
    Carrington M, Harding A. Sequence analysis of two novel HLA-DMA alleles. Immunogenetics 1994 40: 165.CrossRefGoogle Scholar
  41. 41.
    Pious D, Dixon L, Levine F et al. HLA class II regulation and structure: Analysis with HLA-DR3 and HLA-DP point mutants. J Exp Med 1985; 162: 1193–1207.CrossRefGoogle Scholar
  42. 42.
    Cotner T, Mellins E, Johnson AH et al. Mutations affecting antigen processing impair class II-restricted allorecognition. J Immunol 1991; 146: 414–417.Google Scholar
  43. 43.
    Cotner T. Factors governing the binding and recognition of foreign and self-peptides by MHC class II molecules. Autoimmunity 1993; 16: 57–67.CrossRefGoogle Scholar
  44. 44.
    Pious D, Smith L, Monji T et al. Superantigen binding to MHC class II molecules is affected by class II-bound peptides; submitted.Google Scholar
  45. 45.
    Chicz RM, Urban RG, Gorga JC. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 1991; 178: 27–47.CrossRefGoogle Scholar
  46. 46.
    Chicz RM, Urban RG, Lane WS et al. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 1992; 358: 764–768.CrossRefGoogle Scholar
  47. 47.
    Ghosh P, Amaya M, Mellins E et al. The structure of an intermediate in class II MHC maturation, HLA-DR3 complexed with the invariant chain fragment CLIP. Nature 1995; in press.Google Scholar
  48. 48.
    Gautam AM, Pearson C, Quinn V et al. Binding of an invariant-chain peptide, CLIP, to I-A major histocompatibility complex class II molecules. Proc Natl Acad Sci USA 1995; 92: 335–339.CrossRefGoogle Scholar
  49. 49.
    Malcherek G, Gnau V, Jung G et al. Supermotifs enable natural invariant chain-derived peptides to interact with many major histocompatibility complex-class II molecules. J Exp Med 1995; 181: 527–536.CrossRefGoogle Scholar
  50. 50.
    Sette A, Southwood S, Miller J et al. Binding of major histocompatibility complex class II to the invariant chain-derived peptide, CLIP, is regulated by allelic polymorphism in class II. J Exp Med 1995; 181: 677–683.CrossRefGoogle Scholar
  51. 51.
    Rudensky A, Preson HP, Hong SC et al. Sequence analysis of peptides bound to MHC class II molecules. Nature 1991; 353: 622–627.CrossRefGoogle Scholar
  52. 52.
    Chicz RM, Lane WS, Robinson RA et al. Self-peptides bound to the type I diabetes associated class II MHC molecules HLA-DQ1 and HLA-DQ8. Int Immunol 1994; 6: 1639–1649.CrossRefGoogle Scholar
  53. 53.
    Riberdy JM, Avva RR, Geuze HJ et al. Transport and intracellular distribution of MHC class II molecules and associated invariant chain in normal and antigen-processing mutant cell lines. J Cell Biol 1994; 125: 1225–1237.CrossRefGoogle Scholar
  54. 54.
    Romagnoli P, RN Germain. The CLIP region of invariant chain plays a critical role in regulating major histocompatibility complex class II folding, transport, and peptide occupancy. J Exp Med 1994; 180: 1107–1113.CrossRefGoogle Scholar
  55. 55.
    Diment S, Shinde S. Selective processing of exogenous antigens by antigen-presenting cells with deleted MHC genes. J Immunol 1995; 154: 530–535.Google Scholar
  56. 56.
    Schmid SL, Jackson MR. Making class II presentable. Nature 1994; 369: 103–104.CrossRefGoogle Scholar
  57. 57.
    Zachgo S, Dobberstein B, Griffith G. A block in degradation of MHC class II-associated invariant chain correlates with a reduction of transport from endosome carrier vesicles to the prelysosome compartment. J Cell Science. 1992; 103: 811–822.Google Scholar
  58. 58.
    Dautry-Varsat A, Ciechanover A, Lodish HF. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc Natl Acad Sci USA 1983; 80: 2258–2262.CrossRefGoogle Scholar
  59. 59.
    Simister NE, Mostov KE. An Fc receptor structurally related to MHC class I antigens. Nature 1989; 337: 184–187.CrossRefGoogle Scholar
  60. 60.
    Brooks AG, Campbell PL, Reynolds P et al. Antigen presentation and assembly by mouse I-Ak class II molecules in human APC containing deleted or mutated HLA DM molecules in human APC containing deleted or mutated HLA DM genes. J Immunol 1994; 153: 5382–92.Google Scholar
  61. 61.
    Avva RR, Cresswell P. In vivo and in vitro formation and dissociation of HLA-DR complexes with invariant chain-derived peptides. Immunity 1994; 1: 763–774.CrossRefGoogle Scholar
  62. 62.
    Bikoff EK, Germain RN, Robertson EJ. Allelic differences affecting invariant chain dependence of MHC class II subunit assembly. Immunity 1995; 2: 301–310.CrossRefGoogle Scholar
  63. 63.
    Stebbins CC, Loss GE, Elias CG et al. The requirement for DM in class II-restricted antigen presentation and SDS-stable dimer formation is allele and species dependent. J Exp Med 1995; 181: 223–234.CrossRefGoogle Scholar
  64. 64.
    Barnes KA, Mitchell RN. Detection of functional class II-associated antigen: role of a low density endosomal compartment in antigen processing. J Exp Med 1995; 181: 1715–1727.CrossRefGoogle Scholar
  65. 65.
    Castellino F, Germain RN. Extensive trafficking of MHC class II-invariant chain complexes in the endocytic pathway and appearance of peptide-loaded class II in multiple compartments. Immunity 1995; 2: 73–88.CrossRefGoogle Scholar
  66. 66.
    Amigorena S, Webster P, Drake J et al. Invariant chain cleavage and peptide loading in major histocompatibility complex class II vesicles. J Exp Med 1995; 181: 1729–1741.CrossRefGoogle Scholar
  67. 67.
    Calafat J, Nijenhuis M, Janssen H et al. Major histocompatibility complex class II molecules induce the formation of endocytic MIIC-like structures. J Cell Biol 1994; 126: 967–977.CrossRefGoogle Scholar

Copyright information

© R.G. Landes Company 1996

Authors and Affiliations

  • Tom Cotner
  • Donald Pious

There are no affiliations available

Personalised recommendations