Advertisement

TAP Peptide Transporters and Antigen Presentation

  • Frank Momburg
  • Günter J. Hämmerling
  • Jacques J. Neefjes

Abstract

Since the pioneering work of Townsend and colleagues we know that class I molecules of the major histocompatibility complex (MHC) present antigenic peptides at the cell surface mostly originating from endogenously synthesized proteins that have no access to the secretory compartment.1–3 Following their formation through the activity of cytosolic proteases, such peptide epitopes need to be transported across the membrane of the endoplasmic reticulum (ER) in order to associate with the peptide binding groove of newly synthesized class I molecules. This topological problem prompted the search for a cell-biological mechanism mediating vectorial peptide transport into the ER. Five years ago, genetic approaches provided a satisfying explanation with the discovery of putative transporter molecules in the ER membrane that are now called TAP (“transporters associated with antigen processing”).

Keywords

Major Histocompatibility Complex Major Histocompatibility Complex Class Antigen Processing Major Histocompatibility Complex Molecule Transporter Associate With Antigen Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Townsend ARM, Rothbard J, Gotch FM et al. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 1986; 44: 959–968.CrossRefGoogle Scholar
  2. 2.
    Townsend ARM, Gotch FM, Davey J. Cytotoxic T cells recognize fragments of influenza nucleoprotein. Cell 1985; 42: 457–467.CrossRefGoogle Scholar
  3. 3.
    Townsend ARM, Bastin J, Gould K et al. Cytotoxic T lymphocytes recognise influenza haemagglutinin that lacks a signal sequence. Nature 1986; 234: 575–577.CrossRefGoogle Scholar
  4. 4.
    Kavathas P, Bach FH, DeMars R. Gamma-ray induced loss of expression of HLA and glyoxalase I alleles in lymphoblastoid cells. Proc Natl Acad Sci USA 1980; 77: 4251–4255.CrossRefGoogle Scholar
  5. 5.
    DeMars R, Chang CC, Shaw S et al. Homozygous deletions that simultaneously eliminate expressions of class I and class II antigens of EBV-transformed B-lymphoblastoid cells. I. Reduced proliferative responses of autologous and allogeneic T cells that have decreased expression of class II antigens. Hum Immunol 1984; 11: 77–97.CrossRefGoogle Scholar
  6. 6.
    DeMars R, Rudersdorf R, Chang C et al. Mutations that impair a post-transcriptional step in expression of HLA-A and -B antigens. Proc Natl Acad Sci USA 1985; 82: 8183–8187.CrossRefGoogle Scholar
  7. 7.
    Ljunggren H-G, Kärre K. Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med 1985; 162: 1745–1759.CrossRefGoogle Scholar
  8. 8.
    Kärre K, Ljunggren H-G, Piontek G et al. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 1986; 319: 675–678.CrossRefGoogle Scholar
  9. 9.
    Salter RD, Howell DN, Cresswell P. Genes regulating HLA class I antigen expression in T-B lymphoblast hybrids. Immunogenetics 1985; 21: 235–246.CrossRefGoogle Scholar
  10. 10.
    Townsend A, Öhlén C, Bastin J et al. Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature 1989; 340: 443–448.CrossRefGoogle Scholar
  11. 11.
    Cerundolo V, Alexander J, Anderson K et al. Presentation of viral antigen controlled by a gene in the major histocompatibility complex. Nature 1990; 345: 449–452.CrossRefGoogle Scholar
  12. 12.
    Salter RD, Cresswell P. Impaired assembly and transport of the HLA-A and -B antigens in a mutant TxB cell hybrid. EMBO J 1986; 5: 953–949.Google Scholar
  13. 13.
    Ljunggren H-G, Pääbo S, Cochet M et al. Molecular analysis of H-2 deficient lymphoma lines: distinct defects in biosynthesis and association of MHC class I heavy chains and beta2-microglobulin observed in cells with increased sensitivity to NK cell lysis. J Immunol 1989; 142: 2911–2917.Google Scholar
  14. 14.
    Ljunggren H-G, Stam NJ, Öhlén C et al. Empty MHC class I come out in the cold. Nature 1990; 346: 476–480.CrossRefGoogle Scholar
  15. 15.
    Schumacher TNM, Heemels M-T, Neefjes JJ et al. Direct binding of peptide to empty MHC class I molecules on intact cells and in vitro. Cell 1990; 62: 563–567.CrossRefGoogle Scholar
  16. 16.
    Öhlén C, Bastin J, Ljunggren H-G et al. Restoration of H-2b expression and processing of endogenous antigens in the MHC class I pathway by fusion of a lymphoma mutant to L cells of the H-2k haplotype. Eur J Immunol 1990; 20: 1873–1876.CrossRefGoogle Scholar
  17. 17.
    Hosken NA, Bevan MJ. Defective presentation of endogenous antigen by a cell line expressing class I molecules. Science 1990; 248: 367–370.CrossRefGoogle Scholar
  18. 18.
    Anderson K, Cresswell P, Gammon M et al. Endogenously synthesized peptide with an endoplasmic reticulum signal sequence sensitizes antigen processing mutant cells to class I-restricted cell-mediated lysis. J Exp Med 1991; 174: 489–492.CrossRefGoogle Scholar
  19. 19.
    Townsend A, Elliott T, Cerundolo V et al. Assembly of MHC class I molecules analyzed in vitro. Cell 1990; 62: 285–295.CrossRefGoogle Scholar
  20. 20.
    Elliott T, Cerundolo V, Elvin J et al. Peptide-induced conformational change of the class I heavy chain. Nature 1991; 351: 402–406.CrossRefGoogle Scholar
  21. 21.
    Spies T, DeMars R. Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter. Nature 1991; 351: 323–324.CrossRefGoogle Scholar
  22. 22.
    Spies T, Cerundolo V, Colonna M et al. Presentation of viral antigen by MHC class I molecules is dependent on a putative peptide transporter heterodimer. Nature 1992; 355: 644–646.CrossRefGoogle Scholar
  23. 23.
    Powis SJ, Townsend ARM, Deverson EV et al. Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter. Nature 1991; 354: 528–531.CrossRefGoogle Scholar
  24. 24.
    Attaya M, Jameson S, Martinez CK et al. Ham-2 corrects the class I antigen-processing defect in RMA-S cells. Nature 1992; 355: 647–649.CrossRefGoogle Scholar
  25. 25.
    Kelly A, Powis SH, Kerr L-A et al. Assembly and function of the two ABC transporter proteins encoded in the human major histocompatibility complex. Nature 1992; 355: 641–644.CrossRefGoogle Scholar
  26. 26.
    Arnold D, Driscoll J, Androlewicz M et al. Proteasome subunits encoded in the MHC are not generally required for the processing of peptides bound by MHC class I molecules. Nature 1992; 360: 171–174.CrossRefGoogle Scholar
  27. 27.
    Momburg F, Ortiz-Navarrete V, Neefjes J et al. Proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation. Nature 1992; 360: 174–177.CrossRefGoogle Scholar
  28. 28.
    Yang Y, Früh K, Chambers J et al. Major histocompatibility complex (MHC)-encoded HAM2 is necessary for antigenic peptide loading onto class I MHC molecules. J Biol Chem 1992; 267: 11669–11672.Google Scholar
  29. 29.
    Spies T, Bresnahan M, Bahram S et al. A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway. Nature 1990; 348: 744–747.CrossRefGoogle Scholar
  30. 30.
    Livingstone AM, Powis SJ, Diamond AG et al. A trans-acting major histocompatibility complex-linked gene whose alleles determine gain and loss changes in the antigenic structure of a classical class I molecule. J Exp Med 1989; 170: 777–795.CrossRefGoogle Scholar
  31. 31.
    Livingstone AM, Powis SJ, Günther E et al. Cim: an MHC class II-linked allelism affecting the antigenicity of a classical class I molecule for T lymphocytes. Immunogenetics 1991; 34: 157–163.CrossRefGoogle Scholar
  32. 32.
    Powis SJ, Howard JC, Butcher GW. The major histocompatibility complex class II-linked cim locus controls the kinetics of intracellular transport of a classical class I molecule. J Exp Med 1991; 173: 913–921.CrossRefGoogle Scholar
  33. 33.
    Powis SJ, Deverson EV, Coadwell WJ et al. Effect of polymorphism of an MHC-linked transporter on the peptides assembled in a class I molecule. Nature 1992; 357: 211–215.CrossRefGoogle Scholar
  34. 34.
    Monaco JJ, Cho S, Attaya M. Transport protein genes in the murine MHC: Possible implications for antigen processing. Science 1990; 250: 1723–1726.Google Scholar
  35. 35.
    Deverson EV, Gow IR, Coadwell WJ et al. MHC class II region encoding proteins related to the multidrug resitance family of transmembrane transporters. Nature 1990; 348: 738–741.CrossRefGoogle Scholar
  36. 36.
    Trowsdale J, Hanson I, Mockridge I et al. Sequences encoded in the class II region of the MHC related `ABC’ superfamily of transporters. Nature 1990; 348: 741–744.CrossRefGoogle Scholar
  37. 37.
    Bahram S, Arnold D, Bresnahan M et al. Two putative subunits of a peptide pump encoded in the human major histocompatibility complex class II region. Proc Natl Acad Sci USA 1991; 88: 10094–10098.CrossRefGoogle Scholar
  38. 38.
    Powis SH, Mockridge I, Kelly A et al. Polymorphism in a second ABC transporter gene located within the class II region of the human histocompatibility complex. Proc Natl Acad Sci USA 1992; 89: 1463–1467.CrossRefGoogle Scholar
  39. 39.
    Erlich H, Lee JS, Petersen JW et al. Molecular analysis of HLA class I and class II antigen loss mutants reveals a homozygous deletion of the DR, DQ, and part of the DP region: implications for class II gene order. Hum Immunol 1986; 16: 205–219.CrossRefGoogle Scholar
  40. 40.
    Brown MG, Driscoll J, Monaco JJ. Structural and serological similarity of MHC-linked LMP and proteasome (multicatalytic proteinase) cornplexes. Nature 1991; 353: 355–357.CrossRefGoogle Scholar
  41. 41.
    Glynne R, Powis SH, Beck S et al. A proteasome-related gene between the two ABC transporter loci in the class II region of the human MHC. Nature 1991; 353: 357–360.CrossRefGoogle Scholar
  42. 42.
    Ortiz-Navarrete V, Seelig A, Gernold M et al. Subunit of the ‘20S’ proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex. Nature 1991; 353: 662–664.CrossRefGoogle Scholar
  43. 43.
    Martinez CK, Monaco JJ. Homology of proteasome subunits to a major histocompatibility complex-linked LMP gene. Nature 1991; 353: 664–667.CrossRefGoogle Scholar
  44. 44.
    Kelly A, Powis SH, Glynne R et al. Second proteasome-related gene in the human MHC class II region. Nature 1991; 353: 667–668.CrossRefGoogle Scholar
  45. 45.
    Hanson I, Trowsdale J. Colinearity of novel genes in the class II region of the MHC in mouse and human. Immunogenetics 1991; 34: 5–11.CrossRefGoogle Scholar
  46. 46.
    Beck S, Kelly A, Radley E et al. DNA sequence analysis of 66 kb of the human MHC class II region encoding a cluster of genes for antigen presentation. J Mol Biol 1992; 228: 433–441.CrossRefGoogle Scholar
  47. 47.
    Carter CA, Murphy G, Fabre JW et al. Physical mapping of the rat MHC class II genes shows a high level of interspecies conservation. Genomics 1994; 22: 451–455.CrossRefGoogle Scholar
  48. 48.
    Goldberg AL, Rock KL. Proteolysis, proteasomes and antigen presentation. Nature 1992; 357: 375–379.CrossRefGoogle Scholar
  49. 49.
    Rivett JA. Proteasomes: multicatalytic proteinase complexes. Biochem J 1993; 291: 1–10.Google Scholar
  50. 50.
    Townsend A, Bastin J, Gould K et al. Defective presentation to class I-restricted cytotoxic T lymphocytes in vaccinia-infected cells is overcome by enhanced degradation of antigen. J Exp Med 1988; 168: 1211–1224.CrossRefGoogle Scholar
  51. 51.
    Michalek MT, Grant EP, Gramm C et al. A role for the ubiquitin-dependent proteolytic pathway in MHC class I-restricted antigen presentation. Nature 1993; 363: 552–554.CrossRefGoogle Scholar
  52. 52.
    Yewdell J, Lapham C, Bacik I et al. MHC-encoded proteasome subunits LMP2 and LMP7 are not required for efficient antigen presentation. J Immunol 1994; 152: 1163–1170.Google Scholar
  53. 53.
    Zhou X, Momburg F, Liu T et al. Presentation of viral antigens restricted by H-2Kb, Db or Kd in proteasome subunit LMP2- and LMP7-deficient cells. Eur J Immunol 1994; 24: 1863–1868.CrossRefGoogle Scholar
  54. 54.
    Fehling HJ, Swat W, Laplace C et al. MHC class I expression in mice lacking the proteasome subunit LMP-7. Science 1994; 265: 1234–1237.CrossRefGoogle Scholar
  55. 55.
    Van Kaer L, Ashton-Rickardt PG, Eichelberger M et al. Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity 1994; 1: 533–541.CrossRefGoogle Scholar
  56. 56.
    Früh K, Yang Y, Arnold D et al. Alternative exon usage and processing of the major histocompatibility complex-encoded proteasome subunits. J Biol Chem 1992; 267: 22131–22140.Google Scholar
  57. 57.
    Ting JP-Y, Baldwin AS. Regulation of MHC gene expression. Curr Op Immunol 1993; 5: 8–16.CrossRefGoogle Scholar
  58. 58.
    Wright KL, White LC, Kelly A et al. Coordinate regulation of the human TAP 1 and LMP2 genes from a shared bidirectional promoter. J Exp Med 1995; 181: 1459–1471.CrossRefGoogle Scholar
  59. 59.
    Townsend A, Trowsdale J. The transporters associated with antigen presentation. Sem Cell Biol 1993; 4: 53–61.CrossRefGoogle Scholar
  60. 60.
    Momburg F, Roelse J, Neefles J et al. Peptide transporters and antigen processing. Behring Inst Mitt 1994; 94: 26–36.Google Scholar
  61. 61.
    Joly E, Deverson EV, Coadwell WJ et al. The distribution of Tap2 alleles among laboratory rat RT1 haplotypes. Immunogenetics 1994; 40: 45–53.CrossRefGoogle Scholar
  62. 62.
    Colonna M, Bresnahan M, Bahram S et al. Allelic variants of the human putative peptide transporter involved in antigen processing. Proc Natl Acad Sci USA 1992; 89: 3932–3936.CrossRefGoogle Scholar
  63. 63.
    Powis SH, Tonks S, Mockridge I et al. Alleles and haplotypes of the MHC-encoded ABC transporters TAPI and TAP2. Immunogenetics 1993; 37: 373–380.CrossRefGoogle Scholar
  64. 64.
    Jackson DG, Capra JD. TAP1 alleles in insulin-dependent diabetes mellitus: A newly defined centromeric boundary of disease susceptibility. Proc Natl Acad Sci USA 1993; 90: 11079–11083.CrossRefGoogle Scholar
  65. 65.
    Carrington M, Colonna M, Spies T et al. Haplotypic variation of the transporter associated with antigen processing (TAP) genes and their extension of HLA class II region haplotypes. Immunogenetics 1993; 37: 266–273.CrossRefGoogle Scholar
  66. 66.
    Aoki Y, Isselbacher K, Pillai S. Polymorphism involving the transmembrane domains of human TAP2. Immunogenetics 1994; 38: 382.Google Scholar
  67. 67.
    Moins-Teisserenc H, Bobrynina V, Loiseau P et al. New polymorphisms within the human TAPI and TAP2 coding regions. Immunogenetics 1994; 40: 242.CrossRefGoogle Scholar
  68. 68.
    Kellar-Wood HF, Powis SH, Gray J et al. MHC-encoded TAPI and TAP2 dimorphisms in multiple sclerosis. Tissue Antigens 1994; 43: 129–132.CrossRefGoogle Scholar
  69. 69.
    Szafer F, Oksenberg JR, Steinman L. New allelic polymorphisms in TAP genes. Immunogenetics 1994; 39: 374.CrossRefGoogle Scholar
  70. 70.
    Gaskins HR, Monaco JJ, Leiter EH. Expression of intra-MHC transporter (Ham) genes and class I antigens in diabetes-susceptible NOD mice. Science 1992; 256: 1826–1828.CrossRefGoogle Scholar
  71. 71.
    Pearce RB, Trigler L, Svaasand EK et al. Polymorphism in the mouse Tap-1 gene. J Immunol 1993; 151: 5338–5347.Google Scholar
  72. 72.
    Higgins CF. ABC transporters: From microorganisms to man. Annu Rev Cell Biol 1992; 8: 67–113.Google Scholar
  73. 73.
    Hiles ID, Gallagher MP, Jamieson DJ et al. Molecular characterization of the oligopeptide permease of Salmonella typhimurium. J Mol Biol 1987; 195: 125–142.CrossRefGoogle Scholar
  74. 74.
    Kuchler K, Sterne RE, Thorner J. Saccharomyces cerevisiae STE6 gene product: a novel pathway for protein export in eukaryotic cells. EMBO J 1989; 8: 3973–3984.Google Scholar
  75. 75.
    Kuchler K. Unusual routes of protein secretion: the easy way out. Trends Cell Biol 1993; 3: 421–426.CrossRefGoogle Scholar
  76. 76.
    Riordan JR, Rommens JM, Kerem B-S et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245: 1066–1073.CrossRefGoogle Scholar
  77. 77.
    Kamijo K, Taketani S, Yokota S et al. The 70-kDa peroxisomal membrane protein is a member of the Mdr (P-glycoprotein)-related ATP-binding protein superfamily. J Biol Chem 1990; 265: 4534–4540.Google Scholar
  78. 78.
    Mosser J, Douar A-M, Sarde C-O et al. Putative X-linked adenoleukodystrophy gene shares unexpected homology with ABC transporter. Nature 1993; 361: 726–730.CrossRefGoogle Scholar
  79. 79.
    Cole SPC, Bhardwaj G, Gerlach JH et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992; 258: 1650–1654.CrossRefGoogle Scholar
  80. 80.
    Chen C-j, Chin JE, Ueda K et al. Internal duplication and homology with bacterial transport proteins in the mdrl (P-glycoprotein) gene from multidrug-resistant human cells. Cell 1986; 47: 381–389.CrossRefGoogle Scholar
  81. 81.
    Gottesman MM, Pastan I. Biochemistry of the multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993; 62: 385–427.CrossRefGoogle Scholar
  82. 82.
    Hughes AL. Evolution of the ATP-binding cassette transmembrane transporters of vertebrates. Mol Biol Evol 1994; 11: 899–910.Google Scholar
  83. 83.
    Walker JE, Saraste M, Runswick MJ et al. Distantly related sequences in the a-and 13-subunits of ATP synthase, myosin, kinases and other ATP requiring enzymes and a common nucleotide binding fold. EMBO J 1982; 1: 945–951.Google Scholar
  84. 84.
    Kleijmeer MJ, Kelly A, Geuze HJ et al. Location of MHC-encoded transporters in the endoplasmic reticulum and cis-Golgi. Nature 1992; 357: 342–344.CrossRefGoogle Scholar
  85. 85.
    Schumacher TNM, Kantesaria DV, Heemels M-T et al. Peptide length and sequence specificity of the mouse TAP1/TAP2 translocator. J Exp Med 1994; 179: 533–540.CrossRefGoogle Scholar
  86. 86.
    van Endert PM, Tampé R, Meyer TH et al. A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity 1994; 1: 491–500.CrossRefGoogle Scholar
  87. 87.
    Ortmann B, Androlewicz MJ, Cresswell P. MHC class I/ßz-microglobulin complexes associate with TAP transporters before peptide binding. Nature 1994; 368: 864–867.CrossRefGoogle Scholar
  88. 88.
    Suh W-K, Cohen-Doyle MF, Früh K et al. Interaction of MHC class I molecules with the transporter associated with antigen processing. Science 1994; 264: 1322–1326.CrossRefGoogle Scholar
  89. 89.
    Meyer TH, van Endert PM, Uebel S et al. Functional expression and purification of the ABC transporter complex associated with antigen processing (TAP) in insect cells. FEBS Letters 1994; 351: 443–447.CrossRefGoogle Scholar
  90. 90.
    Müller KM, Ebensperger C, Tampé R. Nucleotide binding to the hydrophilic C-terminal domain of the transporter associated with antigen processing (TAP). J Biol Chem 1994; 269: 14032–14037.Google Scholar
  91. 91.
    Wang K, Früh K, Peterson PA et al. Nucleotide binding of the C-terminal domains of the major histocompatibility complex-encoded transporter expressed in Drosophila melanogaster cells. FEBS Letters 1994; 350: 337–341.CrossRefGoogle Scholar
  92. 92.
    Androlewicz MJ, Ortmann B, van Endert PM et al. Characteristics of peptide and major histocompatibility complex class I/ 32-microglobulin binding to the transporter associated with antigen processing (TAPI and TAP2). Proc Natl Acad Sci USA 1994; 91: 12716–12720.CrossRefGoogle Scholar
  93. 93.
    Fasman GD, Gilbert WA. The prediction of transmembrane protein sequences and their conformation: an evaluation. Trends Biol Sci 1990; 15: 89–92.CrossRefGoogle Scholar
  94. 94.
    Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982; 157: 105–132.CrossRefGoogle Scholar
  95. 95.
    Klein P, Kanehisa M, DeLisi C. The detection and classification of membrane-spanning proteins. Biochim Biophys Acta 1985; 815: 468–476.CrossRefGoogle Scholar
  96. 96.
    Vogel H, Jähnig F. Models for the structure of outer-membrane proteins of Escherichia coli derived from Raman spectroscopy and prediction methods. J Mol Biol 1986; 190: 191–199.CrossRefGoogle Scholar
  97. 97.
    Jähnig F. Structure predictions of membrane proteins are not that bad. Trends Biol Sci 1990; 15: 93–95.CrossRefGoogle Scholar
  98. 98.
    Bibi E, Béjà O. Membrane topology of multidrug resistance protein expressed in Escherichia coli. J Biol Chem 1994; 269: 19910–19915.Google Scholar
  99. 99.
    Skach WR, Calayag MC, Lingappa VR. Evidence for an alternate model of human P-glycoprotein structure and biogenesis. J Biol Chem 1993; 268: 6903–6908.Google Scholar
  100. 100.
    Yoshimura A, Kuwazuru Y, Sumizawa T et al. Cytoplasmic orientation and two-domain structure of the multidrug transporter, P-glycoprotein, demonstrated with sequence-specific antibodies. J Biol Chem 1989; 264: 16282–16291.Google Scholar
  101. 101.
    Georges E, Tsuruo T, Ling V. Topology of P-glycoprotein as determined by epitope mapping of MRK-16 monoclonal antibody. J Biol Chem 1993; 268: 1792–1798.Google Scholar
  102. 102.
    Wang R, Seror SJ, Blight M et al. Analysis of the membrane organization of an Escherichia coli protein translocator, HIyB, a member of a large family of prokaryote and eukaryote surface transport proteins. J Mol Biol 1991; 217: 441–454.CrossRefGoogle Scholar
  103. 103.
    Neefles JJ, Momburg F, Hämmerling GJ. Selective and ATP-dependent translocation of peptides by the MHC-encoded peptide transporter. Science 1993; 261: 769–771.CrossRefGoogle Scholar
  104. 104.
    Shepherd JC, Schumacher TNM, Ashton-Rickardt PG et al. TAPI-dependent peptide translocation in vitro is ATP dependent and peptide selective. Cell 1993; 74: 577–584.CrossRefGoogle Scholar
  105. 105.
    Androlewicz MJ, Anderson KS, Cresswell P. Evidence that transporters associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. Proc Natl Acad Sci USA 1993; 90: 9130–9134.CrossRefGoogle Scholar
  106. 106.
    Lévy F, Gabathuler R, Larsson R et al. ATP is required for in vitro assembly of MHC class I antigens but not for transfer of peptides across the ER membrane. Cell 1991; 67: 265–274.CrossRefGoogle Scholar
  107. 107.
    Koppelman B, Zimmerman DL, Walter P et al. Evidence for peptide transport across microsomal membranes. Proc Natl Acad Sci USA 1992; 89: 3908–3912.CrossRefGoogle Scholar
  108. 108.
    Momburg F, Roelse J, Hämmerling GJ et al. Peptide size selection by the major histocompatibility complex-encoded peptide transporter. J Exp Med 1994; 179: 1613–1623.CrossRefGoogle Scholar
  109. 109.
    Heemels M-T, Schumacher TNM, Wonigeit K et al. Peptide translocation by variants of the transporter associated with antigen processing. Science 1993; 262: 2059–2063.CrossRefGoogle Scholar
  110. 110.
    Roelse J, Grommé M, Momburg F et al. Trimming of TAP-translocated peptides in the endoplasmic reticulum and in the cytosol during recycling. J Exp Med 1994; 180: 1591–1597.CrossRefGoogle Scholar
  111. 111.
    Hill A, Jugovic P, York I et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature 1995; 375: 411–415.CrossRefGoogle Scholar
  112. 112.
    Griem P, Wallny H-J, Falk K et al. Uneven tissue distribution of minor histocompatibility proteins versus peptides is caused by MHC expression. Cell 1991; 65: 633–640.CrossRefGoogle Scholar
  113. 113.
    Sarkadi B, Price EM, Boucher RC et al. Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J Biol Chem 1992; 267: 4854–4858.Google Scholar
  114. 114.
    Ambudkar SV, Lelong IH, Zhang J et al. Partial purification and reconstitution of the human multidrug-resistance pump: Characterization of the drug-stimulatable ATP hydrolysis. Proc Natl Acad Sci USA 1992; 89: 8472–8476.CrossRefGoogle Scholar
  115. 115.
    Androlewicz MJ, Cresswell P. Human transporters associated with antigen processing possess a promiscuous peptide-binding site. Immunity 1994; 1: 7–14.CrossRefGoogle Scholar
  116. 116.
    Falk K, Rötzschke O. Consensus motifs and peptide ligands of MHC class I molecules. Sem Immunol 1993; 5: 81–94.CrossRefGoogle Scholar
  117. 117.
    Engelhard VH. Structure of peptides associated with class I and class II molecules. Annu Rev Immunol 1994; 12: 181–207.CrossRefGoogle Scholar
  118. 118.
    Momburg F, Roelse J, Howard JC et al. Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature 1994; 367: 648–651.CrossRefGoogle Scholar
  119. 119.
    Neefjes J, Gottfried E, Roelse J et al. Analysis of the fine specificity of rat, mouse and human TAP peptide transporters. Eur J Immunol 1995; 25: 1133–1136.CrossRefGoogle Scholar
  120. 120.
    Heemels M-T, Ploegh HL. Substrate specificity of allelic variants of the TAP peptide transporter. Immunity 1994; 1: 775–784.CrossRefGoogle Scholar
  121. 121.
    Neisig A, Roelse J, Sijts AJAM et al. Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences. J Immunol 1995; 154: 1273–1279.Google Scholar
  122. 122.
    Choi K, Chen C-J, Kriegler M et al. An altered pattern of cross-resistance in multidrug-resistant human cells results from spontaneous mutations in the mdrl (P-glycoprotein) gene. Cell 1988; 53: 519–529.CrossRefGoogle Scholar
  123. 123.
    Currier SJ, Kane SE, Willingham MC et al. Identification of residues in the first cytoplasmic loop of P-glycoprotein involved in the function of chimeric human MDR1–MDR2 transporters. J Biol Chem 1992; 267: 25153–25159.Google Scholar
  124. 124.
    Obst R, Armandola EA, Nijenhuis M et al. TAP polymorphism does not influence transport of peptide variants in mice and humans. Eur J Immunol 1995; 25: 2170–2176.CrossRefGoogle Scholar
  125. 125.
    Schumacher TNM, Kantesaria D, Serreze DV et al. Transporters from H-2b, H-2d, H-2s, H-2k, and H-2g7 (NOD/Lt) haplotype translocate similar peptides. Proc Natl Acad Sci USA 1994; 91: 13004–13008.CrossRefGoogle Scholar
  126. 126.
    Yewdell JW, Esquivel F, Arnold D et al. Presentation of numerous viral peptides to mouse major histocompatibility complex (MHC) class I-restricted T lymphocytes is mediated by the human MHC-encoded transporter or by a hybrid mouse-human transporter. J Exp Med 1993; 177: 1785–1790.CrossRefGoogle Scholar
  127. 127.
    Lobigs M, Müllbacher A. Recognition of vaccinia virus-encoded major histocompatibility complex class I antigens by virus immune cytotoxic T cells is independent of the polymorphism of the peptide transporter. Proc Natl Acad Sci USA 1993; 90: 2676–2680.CrossRefGoogle Scholar
  128. 128.
    Bjorkman PJ, Parham P. Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem 1990; 59: 253–288.CrossRefGoogle Scholar
  129. 129.
    Saper MA, Bjorkman PJ, Wiley DC. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J Mol Biol 1991; 219: 277–319.CrossRefGoogle Scholar
  130. 130.
    Barber LD, Parham P. Peptide binding to major histocompatibility complex molecules. Annu Rev Cell Biol 1993; 9: 163–206.CrossRefGoogle Scholar
  131. 131.
    Niedermann G, Butz S, Ihlenfeldt HG et al. Contribution of proteasomemediated proteolysis to the hierarchy of epitopes presented by major histocompatibility complex class I molecules. Immunity 1995; 2: 289–299.CrossRefGoogle Scholar
  132. 132.
    Howard JC. Supply and transport of peptides presented by class I MHC molecules. Curr Op Immunol 1995; 7: 69–76.CrossRefGoogle Scholar
  133. 133.
    Rammensee H-G, Falk K, Rötzschke O. Peptides naturally presented by MHC class I molecules. Ann Rev Immunol 1993; 11: 213–244.CrossRefGoogle Scholar
  134. 134.
    Engelhard VH. Structure of peptides associated with MHC class I molecules. Curr Op Immunol 1994; 6: 13–23.CrossRefGoogle Scholar
  135. 135.
    Urban RG, Chicz RM, Lane WS et al. A subset of HLA-B27 molecules contains peptides much longer than nonamers. Proc Natl Acad Sci USA 1994; 91: 1534–1538.CrossRefGoogle Scholar
  136. 136.
    Joyce S, Kuzushima K, Kepecs G et al. Characterization of an incompletely assembled major histocompatibility class I molecule (H-2Kb) associated with unusually long peptides: Implications for antigen processing and presentation. Proc Natl Acad Sci USA 1995; 91: 4145–4149.CrossRefGoogle Scholar
  137. 137.
    Collins EJ, Garboczi DN, Wiley DC. Three-dimensional structure of a peptide extending from one end of a class I binding site. Nature 1994; 371: 626–629.CrossRefGoogle Scholar
  138. 138.
    Olsen AC, Pedersen LO, Hansen AS et al. A quantitative assay to measure the interaction between immunogenic peptides and purified class I major histocompatibility complex molecules. Eur J Immunol 1994; 24: 385–392.CrossRefGoogle Scholar
  139. 139.
    Link Snyder H, Yewdell JW, Bennink JR. Trimming of antigenic peptides in an early secretory compartment. J Exp Med 1994; 180: 2389–2394.CrossRefGoogle Scholar
  140. 140.
    Elliott T, Willis A, Cerundolo V et al. Processing of major histocompatibility class I-restricted antigens in the endoplasmic reticulum. J Exp Med 1995; 181: 1481–1491.CrossRefGoogle Scholar
  141. 141.
    Hermel E, Grigorenko E, Fischer Lindahl K. Expression of medial class I histocompatibility antigens on RMA-S mutant cells. Int Immunol 1991; 3: 407–412.CrossRefGoogle Scholar
  142. 142.
    Eisenlohr LC, Bacik I, Bennink JR et al. Expression of a membrane protease enhances presentation of endogenous antigens to MHC class I-restricted T lymphocytes. Cell 1992; 71: 963–972.CrossRefGoogle Scholar
  143. 143.
    Zhou X, Glas R, Liu T et al. Antigen processing mutant T2 present viral antigen restricted through H-2Kb. Eur J Immunol 1993; 23: 1802–1808.CrossRefGoogle Scholar
  144. 144.
    Bacik I, Cox JH, Anderson R et al. TAP (transporters associated with antigen processing)-independent presentation of endogenously synthesized peptides is enhanced by endoplasmic reticulum insertion sequences located at the amino-but not at the carboxyl-terminus. J Immunol 1994; 152: 381–387.Google Scholar
  145. 145.
    Aldrich CJ, DeCloux A, Woods AS et al. Identification of a Tap-dependent leader peptide recognized by alloreactive T cells specific for a class Ib antigen. Cell 1994; 79: 649–658.CrossRefGoogle Scholar
  146. 146.
    Tabaczewski P, Stroynowski I. Expression of secreted and glycosylphosphatidylinositol-bound Qa-2 molecules is dependent on functional TAP-2 peptide transporter. J Immunol 1994; 152: 5268–5274.Google Scholar
  147. 147.
    Van Kaer L, Ashton-Rickardt PG, Ploegh HL et al. TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD48* T cells. Cell 1992; 71: 1205–1214.CrossRefGoogle Scholar
  148. 148.
    Aldrich CJ, Ljunggren H-G, Van Kaer L et al. Positive selection of self-and alloreactive CD8* T cells in Tap-1 mutant mice. Proc Natl Acad Sci USA 1994; 91: 6525–6528.CrossRefGoogle Scholar
  149. 149.
    Ljunggren H-G, Van Kaer L, Ploegh HL et al. Altered natural killer cell repertoire in Tap-1 mutant mice. Proc Natl Acad Sci USA 1994; 91: 6520–6524.CrossRefGoogle Scholar
  150. 150.
    Franksson L, George E, Powis S et al. Tumorigenicity conferred to lymphoma mutant by major histocompatibility complex-encoded transporter gene. J Exp Med 1993; 177: 201–205.CrossRefGoogle Scholar
  151. 151.
    Salcedo M, Momburg F, Hämmerling GJ et al. Resistance to natural killer cell lysis conferred by TAP1/2 genes in human antigen-processing mutant cells. J Immunol 1994; 152: 1702–1708.Google Scholar
  152. 152.
    Esquivel F, Yewdell J, Bennink J. RMA/S cells present endogenously synthesized cytosolic proteins to class I-restricted cytotoxic T lymphocytes. J Exp Med 1992; 175: 163–168.CrossRefGoogle Scholar
  153. 153.
    Hosken NA, Bevan MJ. An endogenous antigenic peptide bypasses the class I antigen presentation defect in RMA-S. J Exp Med 1992; 175: 719–729.CrossRefGoogle Scholar
  154. 154.
    Zhou X, Glas R, Momburg F et al. TAP2-defective RMA-S cells present Sendai virus antigen to cytotoxic T cells. Eur J Immunol 1993; 23: 1796–1801.CrossRefGoogle Scholar
  155. 155.
    Ossevoort M, Sijts AJAM, van Veen KJH et al. Differential effect of transporter Tap2 gene introduction into RMA-S cells on viral processing. Eur J Immunol 1993; 23: 3082–3088.CrossRefGoogle Scholar
  156. 156.
    Sijts AJAM, De Bruijn MLH, Nieland JD et al. Cytotoxic T lymphocytes against the antigen-processing-defective RMA-S tumor cell line. Eur J Immunol 1992; 22: 1639–1642.CrossRefGoogle Scholar
  157. 157.
    Aldrich CJ, Waltrip R, Hermel E et al. T cell recognition of Qa-lb antigens on cells lacking a functional Tap-2 transporter. J Immunol 1992; 149: 3773–3777.Google Scholar
  158. 158.
    Öhlén C, Bastin J, Ljunggren H-G et al. Resistance to H-2-restricted but not to allo-H-2-specific graft and cytotoxic T lymphocyte responses in lymphoma mutant. J Immunol 1990; 145: 52–58.Google Scholar
  159. 159.
    Aosai F, Öhlén C, Ljunggren H-G et al. Different types of allospecific CTL clones identified by their ability to recognize peptide loading-defective target cells. Eur J Immunol 1991; 21: 2767–2774.CrossRefGoogle Scholar
  160. 160.
    Gabathuler R, Reid G, Kolaitis G et al. Comparison of cell lines deficient in antigen presentation reveals a functional role for TAP-1 alone in antigen processing. J Exp Med 1994; 180: 1415–1425.CrossRefGoogle Scholar
  161. 161.
    Zweerink HJ, Gammon MC, Utz U et al. Presentation of endogenous peptides to MHC class I-restricted cytotoxic T lymphocytes in transport deletion mutant T2 cells. J Immunol 1993; 150: 1763–1771.Google Scholar
  162. 162.
    Henderson RA, Michel H, Sakaguchi K et al. HLA-A2.1-associated peptides from a mutant cell line: A second pathway of antigen presentation. Science 1992; 255: 1264–1266.CrossRefGoogle Scholar
  163. 163.
    Wei ML, Cresswell P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 1992; 356: 443–446.CrossRefGoogle Scholar
  164. 164.
    van Binnendijk RS, van Baalen CA, Poelen MCM et al. Measles virus transmembrane fusion protein synthesized de novo or presented in immunostimulating complexes is endogenously processed for HLA class I-and class II-restricted cytotoxic T cell recognition. J Exp Med 1992; 176: 119–128.CrossRefGoogle Scholar
  165. 165.
    Hammond SA, Bollinger RC, Tobery TW et al. Transporter-independent processing of HIV-1 envelope protein for recognition by CDS’ T cells. Nature 1993; 364: 158–161.CrossRefGoogle Scholar
  166. 166.
    Hammond SA, Johnson RP, Kalams SA et al. An epitope-selective, transporter associated with antigen presentation (TAP)-1/2-independent pathway and a more general TAP-1/2-dependent antigen-processing pathway allow recognition of the HIV envelope glycoprotein by CD8’ CTL. J Immunol 1995; 154: 6140–6156.Google Scholar
  167. 167.
    Holcombe HR, Castano AR, Cheroutre H et al. Nonclassical behavior of the thymus leukemia antigen: Peptide transporter-independent expression of a nonclassical class I molecule. J Exp Med 1995; 181: 1433–1443.CrossRefGoogle Scholar
  168. 168.
    Rodgers JR, Mehta V, Cook RG. Surface expression of 32-microglobulinassociated thymus-leukemia antigen is independent of TAP2. Eur J Immunol 1995; 25: 1001–1007.CrossRefGoogle Scholar
  169. 169.
    Porcelli S, Morita CT, Brenner MB. CD1b restricts the reponse of human CD4–8- T lymphocytes to a microbial antigen. Nature 1992; 360: 593–597.CrossRefGoogle Scholar
  170. 170.
    Beckman EM, Porcelli SA, Morita CT et al. Recognition of a lipid antigen by CD1-restricted a(3’ T cells. Nature 1994; 372: 691–694.CrossRefGoogle Scholar
  171. 171.
    de la Salle H, Hanau D, Fricker D et al. Homozygous human TAP peptide transporter mutation in HLA class I deficiency. Science 1994; 265: 237–241.CrossRefGoogle Scholar
  172. 172.
    Restifo NP, Esquivel F, Kawakami Y et al. Identification of human cancers deficient in antigen processing. J Exp Med 1993; 177: 265–272.CrossRefGoogle Scholar
  173. 173.
    Khanna R, Burrows SR, Argaet V et al. Endoplasmic reticulum signal sequence facilitated transport of peptide epitopes restores immunogenicity of an antigen processing defective tumour cell line. Int Immunol 1994; 6: 639–645.CrossRefGoogle Scholar
  174. 174.
    Cromme FV, Airey J, Heemels M-T et al. Loss of transporter protein, encoded by the TAP-1 gene, is highly correlated with loss of HLA expression in cervical carcinoma. J Exp Med 1994; 179: 335–340.CrossRefGoogle Scholar
  175. 175.
    Cromme FV, van Brommel PFJ, Walboomers JMM et al. Differences in MHC and TAP-1 expression in cervical cancer lymph node metastases as compared with the primary tumours. Br J Cancer 1995; 69: 1176–1181.CrossRefGoogle Scholar
  176. 176.
    Kaklamanis L, Townsend A, Doussis-Anagnostopoulou IA et al. Loss of major histocompatibility complex-encoded transporter associated with antigen presentation (TAP) in colorectal cancer. Am J Pathol 1994; 145: 505–509.Google Scholar
  177. 177.
    Klar D, Hämmerling GJ. Induction of assembly of MHC class I heavy chains with 32-microglobulin by interferon-y. EMBO J 1989; 8: 475–481.Google Scholar
  178. 178.
    Sibille C, Gould K, Hämmerling G et al. A defect in the presentation of intracellular viral antigens is restored by interferon-y in cell lines with impaired major histocompatibility complex class I assembly. Eur J Immunol 1992; 22: 433–440.CrossRefGoogle Scholar
  179. 179.
    Bikoff EK, Jaffe L, Ribaudo RK et al. MHC class I surface expression in embryo-derived cell lines inducible with peptide or interferon. Nature 1991; 354: 235–238.CrossRefGoogle Scholar
  180. 180.
    Möller P, Hämmerling GJ. The role of surface HLA-A,B,C molecules in tumour immunity. Cancer Surveys 1992; 13: 101–127.Google Scholar
  181. 181.
    Joly E, Oldstone MBA. Neuronal cells are deficient in loading peptides onto MHC class I molecules. Neuron 1992; 8: 1185–1190.CrossRefGoogle Scholar
  182. 182.
    Clover LM, Sargent IL, Townsend A et al. Expression of TAP1 by human trophoblast. Eur J Immunol 1995; 25: 543–548.CrossRefGoogle Scholar
  183. 183.
    Roby KF, Fei K, Yang Y et al. Expression of HLA class II-associated peptide transporter and proteasome genes in human placentas and trophoblast cell lines. Immunology 1994; 83: 444–448.Google Scholar
  184. 184.
    Caillat-Zucman S, Bertin E, Timsit J et al. Protection from insulin-dependent diabetes mellitus is linked to a peptide transporter gene. Eur J Immunol 1993; 23: 1784–1788.CrossRefGoogle Scholar
  185. 185.
    Ranningen KS, Undlien DE, Ploski R et al. Linkage disequililibrium between TAP2 variants and HLA class II alleles; no primary association between TAP2 variants and insulin-dependent diabetes mellitus. Eur J Immunol 1993; 23: 1050–1056.CrossRefGoogle Scholar
  186. 186.
    van Endert PM, Liblau RS, Patel SD et al. Major histocompatibility complex-encoded antigen processing gene polymorphism in IDDM. Diabetes 1994; 43: 110–117.CrossRefGoogle Scholar
  187. 187.
    Kawaguchi Y, Ikegami H, Fukuda M et al. Absence of association of TAP and LMP genes with type 1 (insulin-dependent) diabetes mellitus. Life Sci 1994; 54: 2049–2053.CrossRefGoogle Scholar
  188. 188.
    Nakanishi K, Kobayashi T, Murase T et al. Lack of association of the transporter associated with antigen processing with Japanese insulin-dependent diabetes mellitus. Metabolism 1994; 43: 1013–1017.CrossRefGoogle Scholar
  189. 189.
    Burney RO, Pile KD, Gibson K et al. Analysis of the MHC class II encoded components of the HLA class I antigen processing pathway in ankylosing spondylitis. Ann Rheum Dis 1994; 53: 58–60.CrossRefGoogle Scholar
  190. 190.
    Djilali-Saiah I, Caillat-Zucman S, Schmitz J et al. Polymorphism of antigen processing (TAP, LMP) and HLA class II genes in celiac disease. Hum Immunol 1994; 40: 8–16.CrossRefGoogle Scholar
  191. 191.
    Tighe MR, Hall MA, Cardi E et al. Associations between alleles of the major histocompatibility complex-encoded ABC transporter gene TAP2, HLA class II alleles, and celiac disease susceptibility. Hum Immunol 1994; 39: 9–16.CrossRefGoogle Scholar
  192. 192.
    Liblau R, van Endert PM, Sandberg-Wollheim M et al. Antigen processing gene polymorphism in HLA-DR2 multiple sclerosis. Neurology 1993; 43: 1192–1197.Google Scholar
  193. 193.
    Vandevyver C, Stinissen P, Cassiman JJ et al. TAP1 and TAP2 transporter gene polymorphisms in multiple sclerosis: no evidence for disease association with TAP. J Neuroimmunol 1994; 54: 35–40.CrossRefGoogle Scholar
  194. 194.
    Middleton D, Megaw G, Cullen C et al. TAP1 and TAP2 polymorphism in multiple sclerosis. Hum Immunol 1994; 40: 131–134.CrossRefGoogle Scholar
  195. 195.
    Fakler JW, Schmitt-Egenolf M, Vejbaesya S et al. Analysis of TAP2 and HLA-DP gene polymorphism in psoriasis. Hum Immunol 1994; 40: 299–302.CrossRefGoogle Scholar
  196. 196.
    Kuwata S, Yanagisawa M, Saeki H et al. Polymorphisms of transporter associated with antigen processing genes in atopic dermatitis. J Allergy Clin Immunol 1994; 94: 565–574.CrossRefGoogle Scholar
  197. 197.
    Gregory WL, Daly AK, Dunn AN et al. Analysis of HLA-class-II-encoded antigen-processing genes TAP1 and TAP2 in primary biliary cirrhosis. Q J Med 1994; 87: 237–244.Google Scholar
  198. 198.
    Donn RP, Davies EJ, Holt PL et al. Increased frequency of TAP2B in early onset pauciarticular juvenile chronic arthritis. Ann Rheum Dis 1994; 53: 261–264.CrossRefGoogle Scholar
  199. 199.
    Ploski R, Undlien DE, Vinje O et al. Polymorphism of human major histocompatibility complex-encoded transporter associated with antigen processing (TAP) genes and susceptibility to juvenile rheumatoid arthritis. Hum Immunol 1994; 39: 54–60.CrossRefGoogle Scholar
  200. 200.
    Wordsworth BP, Pile KD, Gibson K et al. Analysis of the MHC-encoded transporters TAP1 and TAP2 in rheumatoid arthritis: linkage with DR4 accounts for the association with a minor TAP2 allele. Tissue Antigens 1993; 42: 153–155.CrossRefGoogle Scholar
  201. 201.
    Singal DP, Ye M, Qiu X et al. Polymorphisms in the TAP2 gene and their association with rheumatoid arthritis. Clin Exp Rheumatol 1994; 12: 29–33.Google Scholar
  202. 202.
    Davies EJ, Donn RP, Hillarby MC et al. Polymorphisms of the TAP2 transporter gene in systemic lupus erythematosus. Ann Rheum Dis 1994; 53: 61–63.CrossRefGoogle Scholar
  203. 203.
    van Endert PM, Lopez MT, Patel SD et al. Genomic polymorphism, recombination, and linkage disequilibrium in human major histocompatibility complex-encoded antigen-processing genes. Proc Natl Acad Sci USA 1992; 89: 11594–11597.CrossRefGoogle Scholar
  204. 204.
    Eiermann TH, Fakler J, Goldmann SF et al. TAP2 gene polymorphism segregates with DR-DQ in DR/DP recombinant siblings. Hum Immunol 1993; 38: 217–220.CrossRefGoogle Scholar
  205. 205.
    Faustman D, Li X, Lin HY et al. Linkage of faulty major histocompatibility complex class I to autoimmune diabetes. Science 1991; 254: 1756–1761.CrossRefGoogle Scholar
  206. 206.
    Li F, Guo J, Fu Y et al. Abnormal class I assembly and peptide presentation in the nonobese diabetic mouse. Proc Natl Acad Sci USA 1994; 91: 11128–11132.CrossRefGoogle Scholar
  207. 207.
    Pearce RB, Trigler L, Svaasand EK et al. Levels of Tap-1 and Tap-2 mRNA and expression of Kd and Db on splenic lymphocytes are normal in NOD mice. Diabetes 1995; 44: 572–579.CrossRefGoogle Scholar
  208. 208.
    York IA, Roop C, Andrews DW et al. A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8’ T lymphocytes. Cell 1994; 77: 525–535.CrossRefGoogle Scholar
  209. 209.
    Früh K, Ahn K, Djaballah H et al. A viral inhibitor of peptide transporters for antigen presentation. Nature 1995; 375: 415–418.CrossRefGoogle Scholar
  210. 210.
    Boes B, Hengel H, Ruppert T et al. Interferon y stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. J Exp Med 1994; 179: 901–909.CrossRefGoogle Scholar
  211. 211.
    Realini C, Rogers SW, Rechsteiner M. KEKE motifs: Proposed roles in protein-protein association and presentation of peptides by MHC class I molecules. FEBS Letters 1994; 348: 109–113.CrossRefGoogle Scholar
  212. 212.
    Srivastava PK, Udono H, Blachere NE et al. Hypothesis: Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 1994; 39: 93–98.CrossRefGoogle Scholar
  213. 213.
    Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406–425.Google Scholar

Copyright information

© R.G. Landes Company 1996

Authors and Affiliations

  • Frank Momburg
  • Günter J. Hämmerling
  • Jacques J. Neefjes

There are no affiliations available

Personalised recommendations