The MHC in Host-Pathogen Evolution

  • Miles P. Davenport
  • Adrian V. S. Hill


Host-pathogen interactions have been likened to an arms race between the two organisms. The specific immune response of mammalian species relies heavily on T cell recognition of pathogen derived antigens in the context of class I or class II MHC. Natural selection has therefore favored the ability to bind antigens from a large number of pathogens. Recent analysis of the MHC in different species has elucidated the biochemistry of peptide binding and increased our understanding of the effects of allelic diversity on antigen specificity and host defense. Similarly, molecular analysis of genes from pathogens suggests that selection pressures may favor those which are able to avoid the host immune response. The avoidance of antigen processing, presentation and T cell recognition are a prime way to achieve this, and appears to have been exploited by diverse pathogens. This chapter discusses the role of MHC-peptide interactions in the host-pathogen relationship.


Human Immunodeficiency Virus Cell Recognition Escape Mutant Peptide Binding Region Major Histocompatability Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rammensee H-G, Friede T, Stevanovic S. MHC ligands and peptide motifs: first listing. Immunogenet 1995; 41: 178–228.CrossRefGoogle Scholar
  2. 2.
    Klein J, Satta Y, O’hUigin C. The molecular descent of the major histocompatability complex. Ann Rev Immunol 1993; 11: 269–295.CrossRefGoogle Scholar
  3. 3.
    Zinkernagel RM, Doherty PC. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 1974; 248: 701–702.CrossRefGoogle Scholar
  4. 4.
    Zinkernagel RM, Doherty PC. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature 1974; 251: 547–548.CrossRefGoogle Scholar
  5. 5.
    Pazderka F, Longenecker BM, Law GRJ et al. Histocompatibility of chicken populations selected for resistance to Marek’s disease. Immunogenet 1975; 2: 93–100.CrossRefGoogle Scholar
  6. 6.
    Briles WE, Stone HA, Cole RK. Marek’s disease: Effects of B histocompatibility alloalleles in resistant and susceptible chicken lines. Science 1977; 195: 193–195.CrossRefGoogle Scholar
  7. 7.
    Hill AVS, Allsopp CEM, Kwiatkowski D et al. Common West African HLA antigens are associated with protection from severe malaria. Nature 1991; 352: 595–600.CrossRefGoogle Scholar
  8. 8.
    Thursz MR, Kwiatkowski D, Allsopp CEM et al. Association between an HLA class II allele and clearance of hepatitis B virus in The Gambia. N Engl J Med 1995; 332: 1065–1069.CrossRefGoogle Scholar
  9. 9.
    Brahmajothi V, Pitchappan RM, Kakkanaiah VN et al. Association of pulmonary tuberculosis and HLA in South India. Tubercle 1991; 72: 123–132.CrossRefGoogle Scholar
  10. 10.
    Todd JR, West BC, McDonald JC. Human leukocyte antigen and leprosy: study in Northern Lousiana and review. Rev Infect Dis 1990; 12: 63–74.CrossRefGoogle Scholar
  11. 11.
    Hughes AL, Nei M. Patterns of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 1988; 335: 167–170.CrossRefGoogle Scholar
  12. 12.
    Hedrick PW, Thomson G. Evidence for balancing selection at HLA. Genetics 1983; 104: 449–456.Google Scholar
  13. 13.
    Klitz W, Thomson G, Baur MP. Contrasting evolutionary histories among tightly linked HLA loci. Am J Hum Genet 1986; 39: 349–349.Google Scholar
  14. 14.
    Hedrick PW, Whittam TS, Parham P. Heterozygosity at individual amino acid sites: Extremely high levels for HLA-A and -B genes. Proc Natl Acad Sci USA 1991; 88: 5897–5901.CrossRefGoogle Scholar
  15. 15.
    Barber LD, Gillece-Castro B, Percival L et al. Overlap in the repertoires of peptides bound in vivo by a group of related HLA-B allotypes. Curr Biol 1995; 5: 179–190.CrossRefGoogle Scholar
  16. 16.
    Doherty PC, Zinkernagel RM. Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 1975; 256: 50–52.CrossRefGoogle Scholar
  17. 17.
    Bodmer WF. Evolutionary significance of the HL-A system. Nature 1972; 237: 139–145.CrossRefGoogle Scholar
  18. 18.
    Takahata N, Nei M. Allelic geneology under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 1990; 124: 967–978.Google Scholar
  19. 19.
    Slade RW, McCallum HI. Overdominant vs. frequency-dependent selection at MHC loci. Genetics 1992; 132: 861–862.Google Scholar
  20. 20.
    Wills C, Green DR. A genetic herd immunity model for the maintenance of MHC polymorphism. Immunol Rev 1995; 143: 263–292.CrossRefGoogle Scholar
  21. 21.
    Potts WK, Slev PR. Pathogen-based models favouring MHC genetic diversity. Immunol Rev 1995; 143: 181–198.CrossRefGoogle Scholar
  22. 22.
    Hill AVS, Yates SN, Allsopp CEM et al. Human leukocyte antigens and natural selection by malaria. Phil Trans R Soc Lond B 1994; 346: 379–385.CrossRefGoogle Scholar
  23. 23.
    Takahata N. Genetic variability and rate of gene substitution in a finite population under mutation and fluctuating selection. Genetics 1981; 98: 427–440.Google Scholar
  24. 24.
    Gillespie JH. The interaction of genetic drift and mutation with selection in a fluctuating environment. Theor Pop Biol 1985; 27: 222–237.CrossRefGoogle Scholar
  25. 25.
    Clarke B, Kirkby DRS. Maintenance of histocompatibility polymorphisms. Nature 1966; 211: 999–1000.CrossRefGoogle Scholar
  26. 26.
    Boyse EA, Beauchamp GK, Yamazaki K. The genetics of body scent. Trends Gen 1987; 3: 97–102.CrossRefGoogle Scholar
  27. 27.
    Potts WK, Manning CJ, Wakeland EK. Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature 1991; 352: 619–621.CrossRefGoogle Scholar
  28. 28.
    Klein J, Figueroa F. Evolution of the major histocompatibility complex. Crit Rev Immunol 1986; 6: 295–386.Google Scholar
  29. 29.
    Klein J. Origin of major histocompatibility complex polymorphism: The trans species hypothesis. Hum Immunol 1987; 19: 155–162.Google Scholar
  30. 30.
    Lundeberg AS, McDevitt HO. Evolution of major histocompatibility complex class II allelic diversity: Direct descent in mice and humans. Proc Natl Acad Sci USA 1992; 89: 6545–6549.CrossRefGoogle Scholar
  31. 31.
    Klein D, Ono H, O’hUigin C et al. Extensive MHC variability in cichlid fishes of Lake Malawi. Nature 1993; 364: 330–334.CrossRefGoogle Scholar
  32. 32.
    Satta Y, O’hUigin C, Takahata N et al. Intensity of natural selection at the major histocompatibility complex loci. Proc Natl Acad Sci USA 1994; 91: 7184–7188.CrossRefGoogle Scholar
  33. 33.
    Belich MP, Madrigal JA, Hildebrand WH et al. Unusual HLA-B alleles in two tribes of Brazilian Indians. Nature 1992; 357: 326–329.CrossRefGoogle Scholar
  34. 34.
    Watkins DI, McAdam SN, Liu X et al. New recombinant HLA-B alleles in a tribe of South American Amerindians indicate rapid evolution of MHC class I loci. Nature 1992; 357: 329–333.CrossRefGoogle Scholar
  35. 35.
    Titus-Trachtenberg EA, Rickards O, De Stefano GF et al. Analysis of HLA class II haplotypes in the Capaya indians of Ecuador: A novel DRB1 allele reveals evidence for convergent evolution and balancing selection at position 86. Am J Hum Genet 1994; 55: 160–167.Google Scholar
  36. 36.
    Klein J, O’hUigin C. Class II B Mhc motifs in an evolutionary perspective. Immunol Rev 1995; 143: 89–111.CrossRefGoogle Scholar
  37. 37.
    Takahata N. MHC diversity and selection. Immunol Rev 1995; 143: 225–248.CrossRefGoogle Scholar
  38. 38.
    Erlich HA, Gyllensten UB. Shared epitopes among HLA class II alleles: gene conversion, common ancestry and balancing selection. Immunol Today 1991; 12: 411–414.CrossRefGoogle Scholar
  39. 39.
    McIntyre KR, Seidman JG. Nucleotide sequence of I-Aßbm12 gene is evidence for genetic exchange between mouse immune response genes. Nature 1984; 308: 551–553.CrossRefGoogle Scholar
  40. 40.
    Mengle-Gaw L, Conner S, McDevitt HO et al. Gene conversion between murine class II major histocompatibility complex loci. J Exp Med 1984; 160: 1184–1194.CrossRefGoogle Scholar
  41. 41.
    Gorski J, Mach B. Polymorphism of human Ia antigens: gene conversion between two DR loci results in new HLA-D/DR specificity. Nature 1986; 322: 67–70.CrossRefGoogle Scholar
  42. 42.
    Kobel HR, Du Pasquier L. Genetics of polyploid Xenopus. Trends Gen 1986; 2: 310–315.CrossRefGoogle Scholar
  43. 43.
    Lawlor DA, Zemmour J, Ennis PD et al. Evolution of class-I MHC genes and proteins: From natural selection to thymic selection. Ann Rev Immunol 1990; 8: 23–63.CrossRefGoogle Scholar
  44. 44.
    Vidovic D, Matzinger P. Unresponsiveness to a foreign antigen can be caused by self-tolerance. Nature 1988; 336: 222–225.CrossRefGoogle Scholar
  45. 45.
    Nowak MA, Tarczy-Hornoch K, Austyn JM. The optimal number of major histocompatability complex molecules in an individual. Proc Natl Acad Sci USA 1992; 89: 10896–10899.CrossRefGoogle Scholar
  46. 46.
    Klein J, O’hUigin C. The conundrum of nonclassical major histocompatibility complex genes. Proc Natl Acad Sci USA 1994; 91: 6251–6252.CrossRefGoogle Scholar
  47. 47.
    Hedrick SM. Dawn of the hunt for nonclassical MHC function. Cell 1992; 70: 177–180.CrossRefGoogle Scholar
  48. 48.
    Kurlander RJ, Shawar SM, Brown ML et al. Specialized role for a murine class Ib MHC molecule in prokaryotic host defenses. Science 1992; 257: 678–679.CrossRefGoogle Scholar
  49. 49.
    Smith GP, Dabhi VM, Pamer EG et al. Peptide presentation by the MHC class Ib molecule, H2–M3. Int Immunol 1994; 6: 1917–1926.CrossRefGoogle Scholar
  50. 50.
    Beckman EM, Porcelli SA, Morita CT et al. Recognition of a lipid antigen by CD 1-restricted a13+ T cells. Nature 1994; 372: 691–694.CrossRefGoogle Scholar
  51. 51.
    Parham P. Chewing the fat. Nature 1994; 372: 615–616.CrossRefGoogle Scholar
  52. 52.
    Balk S. MHC evolution. Nature 1995; 374: 505–506.CrossRefGoogle Scholar
  53. 53.
    Hughes AL. Origin and evolution of HLA class I pseudogenes. Mol Biol Evol 1995; 12: 247–258.Google Scholar
  54. 54.
    Maudsley DJ, Pound JD. Modulation of MHC antigen expression by viruses and oncogenes. Immunol Today 1991; 12: 429–431.CrossRefGoogle Scholar
  55. 55.
    Smibert CA, Smiley JR. Differential regulation of endogenous and transduced ß-globin genes during infection of erythroid cells with a herpes simplex type I recombinant. J Virol 1990; 64: 3882–3894.Google Scholar
  56. 56.
    Huang J, Schneider RJ. Adenovirus inhibition of cellular protein synthesis involves inactivation of cap-binding protein. Cell 1991; 65: 271–280.CrossRefGoogle Scholar
  57. 57.
    Schrier PI, Bernards R, Vaessen RTMJ et al. Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. Nature 1983; 305: 771–775.CrossRefGoogle Scholar
  58. 58.
    Vaessen RTMJ, Houweling A, Van der Erb AJ. Post-transcriptional control of class I MHC mRNA in adenovirus 12-transformed cells. Science 1987; 235: 1486–1488.CrossRefGoogle Scholar
  59. 59.
    Andersson M, Pääbo S, Nilsson T et al. Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance. Cell 1985; 43: 215–222.CrossRefGoogle Scholar
  60. 60.
    Burgert H-G, Kvist S. An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 1985; 41: 987–997.CrossRefGoogle Scholar
  61. 61.
    del Val M, Hengel H, Hacker H et al. Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial golgi compartment. J Exp Med 1992; 176: 729–738.CrossRefGoogle Scholar
  62. 62.
    Beersma MFC, Bijlmakers MJE, Ploegh HL. Human cytomegalovirus downregulates HLA class I expression by reducing the stability of class I H chains. J Immunol 1993; 151: 4455–4464.Google Scholar
  63. 63.
    Warren AP, Ducroq DH, Lehner PJ et al. Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes. J Virol 1994; 68: 2822–2829.Google Scholar
  64. 64.
    York IA, Roop C, Andrews DW et al. A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8’ T lymphocytes. Cell 1994; 77: 525–535.CrossRefGoogle Scholar
  65. 65.
    Hill A, Jugovic P, York I et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature 1995; 375: 411–415.CrossRefGoogle Scholar
  66. 66.
    Früh K, Ahn K, Djaballah H et al. A viral inhibitor of peptide transporters for antigen presentation. Nature 1995; 375: 415–418.CrossRefGoogle Scholar
  67. 67.
    Gercken J, Pryjma J, Ernst M et al. Defective antigen presentation by Mycobacterium tuberculosis-infected macrophages. Inf Immun 1994; 62: 3472–3478.Google Scholar
  68. 68.
    Fruth U, Solioz N, Louis JA. Leishmania major interferes with antigen presentation by infected macrophages. J Immunol 1993; 150: 1857–1864.Google Scholar
  69. 69.
    Hill AB, Takiguchi M, McMichael AJ. Different rates of HLA class I molecule assembly which are determined by amino acid sequence in the alpha 2 domain. Immunogenet 1993; 37: 95–101.CrossRefGoogle Scholar
  70. 70.
    Colonna M, Brooks EG, Falco M et al. Generation of allospecific natural killer cells by stimulation across a polymorphism of HLA-C. Science 1993; 260: 1121–1124.CrossRefGoogle Scholar
  71. 71.
    Correa I, Raulet DH. Binding of diverse peptides to MHC class I molecules inhibits target cell lysis by activated natural killer cells. Immunity 1995; 2: 61–71.CrossRefGoogle Scholar
  72. 72.
    Kärre K. Express yourself or die: peptides, MHC molecules, and NK cells. Science 1995; 267: 978–979.CrossRefGoogle Scholar
  73. 73.
    del Val M, Schlicht H-J, Ruppert T et al. Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighbouring residues in the protein. Cell 1991; 66: 1145–1153.CrossRefGoogle Scholar
  74. 74.
    Eisenlohr LC, Yewdell JW, Bennick JR. Flanking sequences influence the presentation of an endogenously synthesized peptide to cytotoxic T lymphocytes. J Exp Med 1992; 175: 481–487.CrossRefGoogle Scholar
  75. 75.
    Neisig A, Roelse J, Sijts AJAM et al. Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences. J Immunol 1995; 154: 1273–1279.Google Scholar
  76. 76.
    de Campos-Lima P-O, Gavioli R, Zhang Q-J et al. HLA-A11 epitope loss isolates of Epstein-Barr virus from a highly Al P population. Science 1993; 260: 98–100.CrossRefGoogle Scholar
  77. 77.
    Pircher H, Moskophidis D, Rohrer U et al. Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature 1990; 346: 629–633.CrossRefGoogle Scholar
  78. 78.
    Aebischer T, Moskophidis D, Rohrer UH et al. In vitro selection of lymphocytic choriomeningitis virus escape mutants by cytotoxic T lymphocytes. Proc Natl Acad Sci USA 1991; 88: 11047–11051.CrossRefGoogle Scholar
  79. 79.
    Phillips RE, Rowland-Jones S, Nixon DF et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 1991; 354: 453–459.CrossRefGoogle Scholar
  80. 80.
    Meyerhans A, Dadaglio G, Vartanian J-P et al. In vivo persistence of a HIV-1 encoded HLA-B27-restricted cytotoxic T lymphocyte epitope despite specific in vitro reactivity. Eur J Immunol 1991; 21: 2637–2640.CrossRefGoogle Scholar
  81. 81.
    Chen ZW, Shen L, Miller MD et al. Cytotoxic T lymphocytes do not appear to select for mutations in an immunodominant epitope of the simian immunodeficiency virus gag. J Immunol 1992; 149: 4060–4066.Google Scholar
  82. 82.
    Nietfeld W, Bauer M, Fevrier M et al. Sequence constraints and recognition by CTL of an HLA-B27-restricted HIV-1 gag epitope. J Immunol 1995; 154: 2188–2197.Google Scholar
  83. 83.
    Couillin I, Culmann-Penciolelli B, Gomard E et al. Impaired cytotoxic T lymphocyte recognition due to genetic variations in the main immunogenic region of the Human Immunodeficiency Virus 1 NEF protein. J Exp Med 1994; 180: 1129–1134.CrossRefGoogle Scholar
  84. 84.
    Bertoletti A, Sette A, Chisari FV et al. Natural variants of cytotoxic epitopes are T cell receptor antagonists for antiviral cytotoxic cells. Nature 1994; 369: 407–410.CrossRefGoogle Scholar
  85. 85.
    Klenerman P, Rowland-Jones S, McAdam S et al. Cytotoxic T cell activity antagonised by naturally occurring HIV-1 gag variants. Nature 1994; 369: 403–407.CrossRefGoogle Scholar
  86. 86.
    Nowak M. HIV mutation rate. Nature 1990; 347: 522.CrossRefGoogle Scholar
  87. 87.
    Davenport MP. Antagonists or altruists: do viral mutants modulate T cell responses. Immunol Today 1995; 16: 432–436.CrossRefGoogle Scholar
  88. 88.
    Alexander J, Snoke K, Ruppert J et al. Functional consequences of engagement of the T cell receptor by low affinity ligands. J Immunol 1993; 150: 1–7.Google Scholar
  89. 89.
    Hogquist KA, Jameson SC, Heath WR et al. T cell receptor antagonist peptides induce positive selection. Cell 1994; 76: 17–27.CrossRefGoogle Scholar
  90. 90.
    Allen PM. Peptides in positive and negative selection: a delicate balance. Cell 1994; 76: 593–596.CrossRefGoogle Scholar
  91. 91.
    Good MF, Berzovsky JA, Miller LH. The T cell response to the malaria circumsporozoite protein: an immunological approach to vaccine development. Ann Rev Immunol 1988; 6: 663–688.CrossRefGoogle Scholar
  92. 92.
    Miskovsky EP, Liu AY, Pavlat W et al. Studies of the mechanism of cytolysis by HIV-1-specific CD4* human CTL clones induced by candidate AIDS vaccines. J Immunol 1994; 153: 2787–2799.Google Scholar
  93. 93.
    Cheynier R, Henrichwark S, Hadida F et al. HIV and T cell expansion in splenic white pulps is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes. Cell 1994; 78: 373–387.CrossRefGoogle Scholar
  94. 94.
    Hill AVS, Elvin J, Willis AC et al. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 1992; 360: 434–439.CrossRefGoogle Scholar
  95. 95.
    Aidoo M, Lalvani A, Allsopp CEM et al. Identification of conserved antigenic components for a cytotoxic T lymphocyte-inducing vaccine against malaria. Lancet 1995; 345: 1003–1007.CrossRefGoogle Scholar

Copyright information

© R.G. Landes Company 1996

Authors and Affiliations

  • Miles P. Davenport
  • Adrian V. S. Hill

There are no affiliations available

Personalised recommendations