Useful Microorganisms

  • George J. Banwart


Microorganisms are used in many facets of the food industry. Desired alterations of food by microorganisms are referred to as fermentations, regardless of the type of metabolism. By definition, fermentation is the anaerobic breakdown of an organic substance by an enzyme system, in which the final hydrogen acceptor is an organic compound. Hence, the aerobic oxidation of alcohol to acetic acid in vinegar production is not a true fermentation. Hence, for our purposes these alterations of foods are called food conversions. Since the enzyme systems of the microorganisms catalyze the changes in foods, for some reactions it is advantageous to use purified enzymes separated from the microbial cells.


Lactic Acid Lactic Acid Bacterium Wine Yeast Protein Efficiency Ratio Acetic Acid Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, B. J.; Laskin, A. I.; and McCoy, C. J. 1973. Growth of Acinetobacter calcoaceticus on ethanol. Appi. Microbiol. 25: 787–792.Google Scholar
  2. Abbott, B. J. 1974. Effect of growth rate and nutrient limitation on the composition and biomass yield of Acinetobacter calcoaceticus. Appi. Microbiol. 28: 58–63.Google Scholar
  3. Acton, J. C., and Dick R. L. 1975. Improved characteristics for dry, fermented turkey sausage. Food Prod. Develop. 9 (8): 91–94.Google Scholar
  4. Amerine, M. A.; Berg, H. W.; and Cruess, W.N. 1972. The Technology of Wine Making. 3d ed. Westport, Conn.: AVI Publishing Company.Google Scholar
  5. Amin, G.; DeMot, R.; Van Dijck, K.; and Verachtert, H. 1985. Direct alcoholic fermentation of starchy biomass using amylolytic yeast strains in batch and immobilized cell systems. Appi. Microbiol. Biotechnol. 22: 237–245.Google Scholar
  6. Anon. 1981. Food from a fermenter looks and tastes like meat. Food Eng. 53(5): 117–118. Arbige, M. V.; Freund, P. R.; Silver, S. C.; and Zelko, J. T. 1986. Novel lipase for Cheddar cheese flavor development. Food Technol. 40(4): 91–98.Google Scholar
  7. Arnott, D. R.; Duitschaever, C. L.; and Bullock, D. H. 1974. Microbiological evaluation of yogurt produced commercially in Ontario. J. Milk Food Technol. 37: 11–13.Google Scholar
  8. Ashraf, M.; Vetter, R. L.; Nissen, S.; and Graham, D. L. 1981. Nutritional evaluation of methanol-based, yeast single-cell protein in a multigeneration rat study. Nutr. Rep. Int. 23: 813–824.Google Scholar
  9. Aston, J. W.; Giles, J. E.; Durward, I. G.; and Dulley, J. R. 1985. Effect of elevated ripening temperatures on proteolysis and flavour development in Cheddar cheese. J. Dairy Res. 52: 565–572.CrossRefGoogle Scholar
  10. Auclair, J., and Accolas, J.-P. 1983. Use of thermophilic lactic starters in the dairy industry. Antonie van Leeuwenhoek 49: 313–326.CrossRefGoogle Scholar
  11. Bacus, J. 1984. Update: Meat fermentation 1984. Food Technol. 38 (6): 59–63.Google Scholar
  12. Bellamy, W. D. 1974. Single cell proteins from cellulosic wastes. Biotechnol. Bioeng. 16: 869–880.CrossRefGoogle Scholar
  13. Biede, S. L., and Hammond, E. G. 1979. Swiss cheese flavor: 1. Chemical analysis. J. Dairy Sci. 62: 227–237.CrossRefGoogle Scholar
  14. Bisping, B., and Rehm, H.J. 1986. Glycerol production by cells of Saccharomyces cerevisiae immobilized in sintered glass. Appi. Microbiol. Biotechnol. 23: 174–179.Google Scholar
  15. Bitton, G.; Koopman, B.; and Wang, H. 1984. Bakers’ yeast assay procedure for testing heavy metal toxicity. Bull. Environ. Contam. Toxicol. 32: 80–84.CrossRefGoogle Scholar
  16. USEFUL MICROORGANISMS 495Google Scholar
  17. Böing, J. T. P. 1982. “Enzyme Production.” In Prescott andDunn’s Industrial Microbiology. 4th ed. G. Reed, ed. Westport, Conn.: AVI Publishing Co.Google Scholar
  18. Buckee, G, K.; Malcolm, P. T.; and Peppard, T. L. 1982. Evolution of volatile compounds during wort-boiling. J. Inst. Brew. 88: 175–181.Google Scholar
  19. Bynum, D. G., and Barbano, D. M. 1985. Whole milk reverse osmosis retentates for Ched-Google Scholar
  20. dar cheese manufacture: Chemical changes during aging. J. Dairy Sci. 68: 1–10. Calam, C. T., and Russell, D. W. 1973. Microbial aspects of fermentation process development. J. Appt. Chem. Biotechnol. 23: 225–237.Google Scholar
  21. Calleja, G. B.; Levy-Rick, S.; Lusena, C. V.; Nasim, A.; and Moranelli, F. 1982. Direct and quantitative conversion of starch to ethanol by the yeast Schwanniomyces alluvius. Biotechnol. Lett. 4: 543–547.CrossRefGoogle Scholar
  22. Calleja, G. B.; Yaguchi, M.; Levy-Rick, S.; Seguin, J. R. H.,; Roy, C.,; and Lusena, C. V. 1986. Single-cell protein production from potato starch by the yeast Schwanniomyces alluvius. J Ferment. Technol. 64: 71–75.Google Scholar
  23. Cardoso, M. B., and Nicoli, J. R. 1981a, Single cell protein from the thermotolerant fungus Phanerochaete chrysosporium grown in vinasse. I. Production and composition. Nutr. Rep. Int. 24: 237–247.Google Scholar
  24. Cardoso, M. B. 1981b. Single cell protein from the thermotolerant fungus Phanerochaete chrysosporium grown in vinasse. II. Nutritive value. Nutr. Rep. Int. 24: 249–255.Google Scholar
  25. Chandan, R. C. 1982. “Other Fermented Dairy Products.” In Prescott andDunn’s Industrial Microbiology. G. Reed, ed. Westport, Conn.: AVI Publishing Co.Google Scholar
  26. Chang, S. T. 1980. Mushrooms as human food. BioScience 30: 399–401.Google Scholar
  27. Clarke, B. J. 1986. Hop products. J. Inst. Brew. 92: 123–130.Google Scholar
  28. Clementi, F.; Moresi, M.; and Rossi, J. 1985. Effect of medium composition on microbial utilisation of citrus waste by mixed fungal culture. Appl. Microbiol. Biotechnol. 22: 2631.CrossRefGoogle Scholar
  29. Coghill, D. 1979. The ripening of blue vein cheese: A review. Aust. J. Dairy Technol. 34: 72–75.Google Scholar
  30. Cooney, C. L.; Levine, D. W.; and Snedecor, B. 1975. Production of single-cell protein from methanol. Food Technol. 29(2): 33, 36, 38, 40, 42.Google Scholar
  31. Cooney, C. L., and Makiguchi, N. 1977. An assessment of single cell protein from methanol-grown yeast. Biotechnol. Bioeng. Symp. No. 7, 65–76.Google Scholar
  32. Costilow, R. N.; Gates, K.; and Lacy M. L. 1980. Molds in brined cucumbers: cause of softening during air-purging of fermentations. Appl. Environ. Microbiol. 40: 417–422.Google Scholar
  33. Cuer, A.; Dauphin, G.; Kergomard, A.; Dumont, J. P.; and Adda, J. 1979. Production of Smethylthioacetate by Brevibacterium linens. Appi. Environ. Microbiol. 38: 332–334.Google Scholar
  34. Daeschel, M. A., and Fleming, H. P. 1981. Entrance and growth of lactic acid bacteria in gas-exchanged, brined cucumbers. Appl. Environ. Microbiol. 42: 1111–1118.Google Scholar
  35. Daly, N. M.; Lee, T. H.; and Fleet, G. H. 1984. Growth of fungi on wine corks and its contribution to corky taints in wine. Food Technol. Aust. 36: 22–24.Google Scholar
  36. Davis, C. R.; Wibowo, D. J.; Lee, T. H.; and Fleet, G. H. 1986. Growth and metabolism of lactic acid bacteria during and after malolactic fermentation of wines at different pH. Appl. Environ. Microbiol. 51: 539–545.Google Scholar
  37. de Groot, A. P.; Dreef-van der Meulen, H. C.; Til, H. P.; and Feron, V. J. 1975. Safety evaluation of yeast grown on hydrocarbons. IV. Two-year feeding and multigeneration study in rats with yeast grown on pure n-paraffins. Food Cosmet. Toxicol. 13: 619–627.CrossRefGoogle Scholar
  38. Delcour, J. A.; Caers, J. M.; Dondeyne, P.; Delvaux, F.; and Robberechts, E. 1982. An enzymatic assay for the determination of acetaldehyde in beers. J. Inst. Brew. 88: 384–386.Google Scholar
  39. Demain, A. L. 1971. Microbial production of food additives. Symposia Soc. Gen. Microbiol. 21: 77–101.Google Scholar
  40. Dijkhuizen, L.; Hansen, T. A.; and Harder, W. 1985. Methanol, a potential feedstock for biotechnological processes. Trends Biotechnol. 3: 262–267.CrossRefGoogle Scholar
  41. D’Mello, J. P. F., and Acamovic, T. 1976. Evaluation of methanol-grown bacteria as a source of protein and energy for young chicks. Brit. Poultry Sci. 17: 393–401.CrossRefGoogle Scholar
  42. Dolezil, L., and Kirsop, B. H. 1980. Variations amongst beers and lactic acid bacteria relating to beer spoilage.]. Inst. Brew. 86: 122–124.Google Scholar
  43. Driessen, F. M.; Ubbels, J.; and Stadhouders, J. 1977. Continuous manufacture of yogurt. I. Optimal conditions and kinetics of the prefermentation process. Biotechnol. Bioeng. 19: 821–839.CrossRefGoogle Scholar
  44. Drysdale, G. S., and Fleet, G. H. 1985. Acetic acid bacteria in some Australian wines. Food Technol. Aust. 37: 17–20.Google Scholar
  45. DuBois, D. K. 1981. Fermented doughs. Cereal Foods World 26: 617–619, 621–622.Google Scholar
  46. Edinger, W. D., and Splittstoesser, D. F. 1986. Production by lactic acid bacteria of sorbicalcohol, the precursor of the geranium odor compound. Amer.]. Enol. Vitic. 37: 34–38.Google Scholar
  47. Einarsson, H., and Snygg, B. G. 1986. Niacin assay by monitoring changes in electrical conductance caused by microbial growth. J. Appi. Bacteriol. 60: 15–19.CrossRefGoogle Scholar
  48. El Soda, M. 1986. Acceleration of cheese ripening: Recent advances.]. Food Prot. 49: 395399.Google Scholar
  49. Endo, H.; Nakajima, K.; Chino, R.; and Shirota, M. 1974. Growth characteristics and cellular components of Chlorella regularis, heterotrophic fast growing strain. Agr. Biol. Chem. 38: 9–18.CrossRefGoogle Scholar
  50. Eschenbruch, R.; Cresswell, K. J.; Fisher, B. M.; and Thornton, R. H. 1982. Selective hybridisation of pure culture wine yeasts. 1. Elimination of undesirable wine-making properties. Eur. J. Appi. Microbiol. Biotechnol. 14: 155–158.CrossRefGoogle Scholar
  51. Etchells, J. L.; Fleming, H. P.; Hontz, L. H.; Bell, T. A.; and Monroe, R. J. 1975. Factors influencing bloater formation in brined cucumbers during controlled fermentation. J. Food Sci. 40: 569–575.CrossRefGoogle Scholar
  52. Fabregas, J., and Herrero, C. 1985. Marine microalgae as a potential source of single cell protein (SCP). Appi. Microbiol. Biotechnol. 23: 110–113.CrossRefGoogle Scholar
  53. Fadda, M. B.; Dessi, M. R.; Maurici, R.; Rinaldi, A.; and Satta, G. 1984. Highly efficient solubilization of natural lignocellulosic materials by a commercial cellulase immobilized on various solid supports. Appi. Microbiol. Biotechnol. 19: 306–311.Google Scholar
  54. Field, C. E.; Pivarnik, L. F.; Barnett, S. M.; and Rand, A. G., Jr. 1986. Utilization of glucose oxidase for extending the shelf-life of fish.]. Food Sci. 51: 66–70.CrossRefGoogle Scholar
  55. Fields, M. L.; Hoseney, R. C.; and Varriano-Marston, E. 1982. Microbiology of cracker sponge fermentation. Cereal Chem. 59: 23–26.Google Scholar
  56. Fleming, H. P.; Pharr, D. M.; and Thompson, R. L. 1980. Brining properties of cucumbers exposed to pure oxygen before brining. Food Sci. 45: 1578–1582.CrossRefGoogle Scholar
  57. Fleming, H. P.; Thompson, R. L.; Bell, T. A.; and Monroe, R. J. 1977. Effect of brine depth on physical properties of brine-stock cucumbers. Food Sci. 42: 1464–1470.CrossRefGoogle Scholar
  58. Fleming, H. P.; Thompson, R. L.; Etchells, J. L.; Kelling, R. E.; and Bell, T. A. 1973. Bloater formation in brined cucumbers fermented by Lactobacillus plantarum. J. Food Sci. 38: 499–503.Google Scholar
  59. Fowler, A. A., and Priestly, R. J. 1980. The evolution of panary fermentation and dough development-A review. Food Chem. 5: 283–301.CrossRefGoogle Scholar
  60. Fujita, Y.; Okamoto, T.; and Irie, R. 1984. Plasmid distribution in lactic streptococci. Agr. Biol. Chem. 48: 1895–1898.CrossRefGoogle Scholar
  61. Fukui, S., and Tanaka, A. 1982. Immobilized microbial cells. Ann. Rev. Microbiol. 36: 145–172.CrossRefGoogle Scholar
  62. Fukushima, D. 1985. Fermented vegetable protein and related foods ofJapan and China. Food Re - o. Int. 1: 149–209.CrossRefGoogle Scholar
  63. Gates, K., and Costilow, R. N. 1981. Factors influencing softening of salt-stock pickles in air-purged fermentation.]. Food Sci. 46: 274–277, 282.Google Scholar
  64. Ghommidh, C.; Cutayar, J. M.; and Navarro, J. M. 1986. Continuous production of vinegar. 1. Research strategy. Biotechnol. Lett. 8: 13–18.CrossRefGoogle Scholar
  65. Gierhart, D. L., and Potter, N. N. 1978. Effects of ribonucleic acid removal methods on composition and functional properties of Candida utilis. J. Food Sci. 43: 1705–1713.CrossRefGoogle Scholar
  66. Gilles, J.; Turner, K. W.; and Martley, F. G. 1983. Swiss-type cheese. 1. Manufacturing and sampling procedures. New Zealand J. Dairy Sci. Technol. 18: 109–115.Google Scholar
  67. Godtfredsen, S. E.; Rasmussen, A. M.; Otteson, M.; Mathiasen, T.; and Ahrenst-Larsen, B. 1984. Application of the acetolactate decarboxylase from Lactobacillus casei for accelerated maturation of beer. Carlsberg Res. Commun. 49: 69–74.CrossRefGoogle Scholar
  68. Green, M. L. 1985. Effect of milk pretreatment and making conditions on the properties of Cheddar cheese from milk concentrated by ultrafiltration. J. Dairy Res. 52: 555–564.CrossRefGoogle Scholar
  69. Gregory, J. F., III. 1983. Methods of vitamin assay for nutritional evaluation of food processing. Food Technol. 37: 75–80.Google Scholar
  70. Griffin, H. L.; Sloneker, J. H.; and Inglett, G. E. 1974. Cellulase production by Trichoderma viride on feedlot waste. Appl. Microbiol. 27: 1061–1066.Google Scholar
  71. Grobbelaar, J. U. 1979. Observations on the mass culture of algae as a potential source of food. So. Afr. J Sci. 75: 133–136.Google Scholar
  72. Guilarte, T. R. 1983. Radiometric microbiological assay of vitamin B6: Assay simplification and sensitivity study. J. Assoc. Offic. Anal. Chem. 66: 58–61.Google Scholar
  73. Hammond, J. R. M., and Eckersley, K. W. 1984. Fermentation properties of brewing yeast with killer character./ Inst. Brew. 90: 167–177.Google Scholar
  74. Han, Y. W. 1975. Microbial fermentation of rice straw: Nutritive composition and in vitro digestibility of the fermentation products. Appl. Microbiol. 29: 510–514.Google Scholar
  75. Han, Y. W., and Anderson, A. W. 1975. Semisolid fermentation of ryegrass straw. Appl. Microbiol. 30: 930–934.Google Scholar
  76. Han, Y. W., and Callihan, C. D. 1974. Cellulose fermentation: Effect of substrate pretreatment on microbial growth. Appl. Microbial. 27: 159–165.Google Scholar
  77. Hara, S.; Iimura, Y.; and Otsuka, K. 1980. Breeding of useful killer wine yeasts. Amer. J. Enol. Vitic. 31: 28–33.Google Scholar
  78. Harper, W. J., and Seiberling, D. A. 1976. “Continuous and Automated Processes.” In Dairy Technology and Engineering. W. J. Harper and C. W. Hale, eds. Westport, Conn.: AVI Publishing Co., Inc.Google Scholar
  79. Harrison, J. S. 1970. “Miscellaneous Products from Yeast.” In The Yeasts. Vol. 3. Yeast Technology. A. H. Rose and J. S. Harrison, eds. London and New York: Academic Press.Google Scholar
  80. Hasegawa, S.; Patel, M. N.; and Snyder, R. C. 1982. Reduction of limonin bitterness in navel orange juice serum with bacterial cells immobilized in acrylamide gel. J. Agr. Food Chem. 30: 509–511.CrossRefGoogle Scholar
  81. Hasegawa, S., Vandercook, C. E.; Choi, G. Y.; Herman, Z.; and Ou, P. 1985. Limonoid debittering of citrus juice sera by immobilized cells of Corynebacterium fascians. J. Food Sci. 50: 330–332.CrossRefGoogle Scholar
  82. Hausser, A. G.; Goldberg, B. S.; and Mertens, J. L. 1983. An immobilized two-enzyme system (fungal a-amylaselglucoamylase) and its use in the continuous production of high conversion maltose-containing corn syrups. Biotechnol. Bioeng. 25: 525–539.CrossRefGoogle Scholar
  83. Hawke, S. J.; Panter, C.; Hayes, M.; and Nguyen, M. H. 1983. Selection of yeasts for fer- mentation of sweet sorghum juice to alcohol. Food Technol. Aust. 35 (3): 123–125.Google Scholar
  84. Hayakawa, I., and Nomura, D. 1978. Effect of surfactants on spinnability and rheological properties of single cell protein (SCP). Agr. Biol. Chem. 42: 17–23.CrossRefGoogle Scholar
  85. Helbert, J. R. 1982. “Beer.” In Prescott and Dunn’s Industrial Microbiology. G. Reed, ed. Westport, Conn.: AVI Publishing Co., Inc.Google Scholar
  86. Hinchliffe, E. 1985. ß-glucanase: The successful application of genetic engineering. J. Inst. Brew. 91: 384–389.Google Scholar
  87. Honer, C., and Horwich, A. 1983. Cheese and ultrafiltration: Where are we today? Dairy Rec. 84 (8): 80–82.Google Scholar
  88. Hopkins, T. R. 1985. A multipurpose enzyme sensor based on alcohol oxidase. Amer. Biotechnol. Lab. 3 (5): 32–35.Google Scholar
  89. Hopwood, D. A. 1981. The genetic programming of industrial microorganisms. Sci. Amer. 245 (3): 90–102.CrossRefGoogle Scholar
  90. Huang, F., and Rha, C. 1978. Formation of single-cell protein filament with hydrocolloids. J. Food Sci. 43: 780–782, 786.Google Scholar
  91. Hudson, J. M., and Buescher, R. W. 1986. Relationship between degree of pectin methylation and tissue firmness of cucumber pickles. J. Food Sci. 51: 138–140, 149. Hudson, O. P. 1986. Malting technology./ Inst. Brew. 92: 115–122.Google Scholar
  92. Ikeda,. T.; Hamada, H.; Miki, K.; and Senda, M. 1985. Glucose oxidase-immobilized benzoquinone-carbon paste electrode as a glucose sensor. Agr. Biol. Chem. 49: 541–543.CrossRefGoogle Scholar
  93. Imai, K.; Shiomi, T.; Uchida, K.; and Miya, M. 1986. Immobilization of enzyme onto poly (ethylene-vinyl alcohol) membrane. Biotechnol. Bioeng. 28: 198–203.CrossRefGoogle Scholar
  94. Inloes, D. S.; Smith, W. J.; Taylor, D. P.;Cohen, S. N.; Michaels, A. S.; and Robertson, C. R. 1983. Hollow-fiber membrane bioreactors using immobilized E. coli for protein synthesis. Biotechnol. Bioeng. 25: 2653–2681.CrossRefGoogle Scholar
  95. Ishii, S., and Yokotsuka, T. 1973. Susceptibility of fruit juice to enzymatic clarification by pectin lyase and its relation to pectin in fruit juice. J. Agr. Food Chem. 21: 269–272.CrossRefGoogle Scholar
  96. Jackson, J. A., and Conrad, M. E. 1985. Technical aspects of urine dipstick reagent areas. Amer. Clin. Prod. Rev. 4 (12): 10–19.Google Scholar
  97. Jara, P.; Allais, J. J.; and Baratti, J. 1983. Isolation and characterization of a methanol utilizing yeast with high cell yield. Eur. J. Appi. Microbiol. Biotechnol. 17: 19–23.CrossRefGoogle Scholar
  98. Johansen, A., and Flink, J. M. 1986. Immobilization of yeast cells by internal gelation of alginate. Enz. Microb. Technol. 8: 145–148.CrossRefGoogle Scholar
  99. Jolly, R., and Kosikowski, F. V. 1975. Blue cheese flavor by microbial lipases and mold spores utilizing whey powder, butter, and coconut fats./ Food Sci. 40: 285–287.CrossRefGoogle Scholar
  100. Jones, R. S., and Ough, C. S. 1985. Variations in the percent ethanol (v/v) per °Brix conversions of wines from different climatic regions. Amer. J. Enol. Vitic. 36: 268–270.Google Scholar
  101. Joyeux, A.; Lafon-Lafourcade, S.; and Ribéreau-Gayon, P. 1984. Evolution of acetic acid bacteria during fermentation and storage of wine. Appl. Environ. Microbiol. 48: 153156.Google Scholar
  102. Kaneko, T.; Ohmori, S.; and Masai, H. 1973. An improved method for the discrimination between biogenic and synthetic acetic acid with a liquid scintillation counter./ Food Sci 38: 350–353.CrossRefGoogle Scholar
  103. Karahadian, C.; Josephson, D. B.; and Lindsay, R. C. 1985. Volatile compounds from Penicillium sp. contributing musty-earthy notes to brie and camembert cheese flavors./ Agr. Food Chem. 33: 339–343.CrossRefGoogle Scholar
  104. Kargi, F.; Shuler, M. L.; Vashon, R.; Seeley, H. W.; Henry, A.; and Austic, R. E. 1980. Continuous aerobic conversion of poultry waste into single-cell protein using a single reactor: Kinetic analysis and determination of optimal conditions. Biotechnol. Bioeng. 22: 1567–1600.CrossRefGoogle Scholar
  105. Karube, I.; Satoh, I.; Araki, Y.; Suzuki, S.; and Yamada, H. 1980. Monoamine oxidase electrode in freshness testing of meat. Enz. Microb. Technol. 2: 117–120.CrossRefGoogle Scholar
  106. Kealey, K. S., and Kosikowski, F. V. 1985. Cheddar cheese from ultrafiltered whole milk retentates in industrial cheese making. Dairy Sci. 68: 3148–3154.CrossRefGoogle Scholar
  107. Kilara, A. 1985a. Enzyme-modified lipid food ingredients. Process Biochem. 20(2): 36–46. 1985b. Enzyme-modified protein food ingredients. Process Biochem. 20 (5): 149–158.Google Scholar
  108. King, P. P. 1982. Biotechnology. An industrial view. Chem. Technol. Biotechnol. 32: 2–8. Kingdon, C. F. M. 1985. An aminoglycoside biosensor incorporating free or immobilized bacterial cells. Appl. Microbiol. Biotechnol. 22: 165–168.Google Scholar
  109. Kinsella, J. E., and Hwang, D. 1976. Biosynthesis of flavors by Penicillium roqueforti. Biotechnol. Bioeng. 18: 927–938.CrossRefGoogle Scholar
  110. Kline, L., and Sugihara, T. F. 1971. Microorganism of the San Francisco sour dough bread process. II. Isolation and characterization of undescribed bacterial species responsible for the souring activity. Appi. Microbiol. 21: 459–465.Google Scholar
  111. Knorr, D.; Shetty, K. J.; Hood, L. F.; and Kinsella, J. E. 1979. An enzymatic method for yeast autolysis. J. Food Sci. 44: 1362–1365.CrossRefGoogle Scholar
  112. Kodama, K. 1970. “Saké Yeast.” In The Yeasts. Vol. 3. Yeast Technology. A. H. Rose and J. S. Harrison, eds. London and New York: Academic Press.Google Scholar
  113. Kosikowski, F. V. 1985. Cheese. Sci. Amer. 252(5): 88–92, 97–99.Google Scholar
  114. Kosikowski, F. V. 1986. New cheese-making procedures utilizing ultrafiltration. Food Technol. 40(6): 71–77, 156.Google Scholar
  115. Kosikowski, F. V.; Masters, A. R.; and Mistry, V. V. 1985. Cottage cheese from retentatesupplemented skim milk. J. Dairy Sci. 68: 541–547.CrossRefGoogle Scholar
  116. Kunkee, R. E., and Amerine, M. A. 1970. “Yeasts in Wine-Making.” In The Yeasts. Vol. 3. Yeast Technology. A. H. Rose and J. S. Harrison, eds. London and New York: Academic Press.Google Scholar
  117. Laluce, C., and Mattoon, J. R. 1984. Development of rapidly fermenting strains of Saccharomyces diastaticus for direct conversion of starch and dextrins to ethanol. Appi. Environ. Microbiol. 48: 17–25.Google Scholar
  118. Laskin, A. I. 1977. Ethanol as a substrate for single cell protein production. Biotechnol. Bioeng. 7: 91–103.Google Scholar
  119. Law, B. A., and Wigmore, A. S. 1983. Accelerated ripening of Cheddar cheese with a commercial proteinase and intracellular enzymes from starter streptococci. J. Dairy Sci. 50: 519–525.Google Scholar
  120. Lawrence, R. C.; Heap, H. A.; and Gilles, J. 1984. A controlled approach to cheese technology. J. Dairy Sci. 67: 1632–1645.CrossRefGoogle Scholar
  121. Lelieveld, H. L. M. 1984. Mixed-strain continuous milk fermentation. Proc. Biochem 19 (3): 112–113.Google Scholar
  122. Liebich, H. M.; Douglas, D. R.; Bayer, E.; and Zlatkis, A. 1970. The volatile flavor components of Cheddar cheese. J. Chromatogr. Sci. 8: 355–359.Google Scholar
  123. Lin, J. C.; Chastain, M. E; and Strength, D. R. 1986. Sensory and nutritional evaluation of wheat bread supplemented with single cell protein from torula yeast (Candida utilis). J. Food Sci. 51: 647–651.CrossRefGoogle Scholar
  124. Lipinsky, E. S., and Litchfield, J. H. 1974. Single-cell protein in perspective. Food Technol. 28(5): 16, 18, 20, 22, 24, 40.Google Scholar
  125. Litchfield, J. H. 1977. Single-cell proteins. Food Technol. 31 (5): 175–179.Google Scholar
  126. Litchfield, J. H. 1980. Microbial protein production. BioScience 30: 387–396.Google Scholar
  127. Litchfield, J. H. 1983. Single-cell proteins. Science 219: 740–746.CrossRefGoogle Scholar
  128. Löffler, A. 1986. Proteolytic enzymes: Sources and applications. Food Technol. 40: 63–70. MacBean, R. D.; Hall, R. J.; and Linklater, P. M. 1979. Analysis of pH-stat continuous cultivation and the stability of the mixed fermentation in continuous yogurt production. Biotechnol. Bioeng. 21: 1517–1541.Google Scholar
  129. McCord, J. D., and Ryu, D. D. Y. 1985. Development of malolactic fermentation processusing immobilized whole cells and enzymes. Amer. J. Enol. Vitic. 36: 214–218.Google Scholar
  130. McFeeters, R. F.; Fleming, H. P.; and Daeschel, M. A. 1984. Malic acid degradation and brined cucumber bloating. J. Food Sci. 49: 999–1002.CrossRefGoogle Scholar
  131. McFeeters, R. F.; Fleming, H. P.; and Thompson, R. L. 1982. Malic acid as a source of carbon dioxide in cucumber juice fermentations. J. Food Sci. 47: 1862–1865.CrossRefGoogle Scholar
  132. McFeeters, R. F.;1985. Pectinesterase activity, pectin methylation, and texture changes during storage of blanched cucumber slices. J. Food Sci. 50: 201–205, 219.Google Scholar
  133. McGugan, W. A.; Emmons, D. B.; and Larmond, E. 1979. Influence of volatile and nonvolatile fractions on intensity of Cheddar cheese flavor. J. Dairy Sci. 62: 398–403.CrossRefGoogle Scholar
  134. McMahon, D. J., and Brown, R.J. 1984. Enzymic coagulation of casein micelles: A review. J. Dairy Sci. 67: 919–929.CrossRefGoogle Scholar
  135. Macmillan, J. D., and Phaff, H.J. 1973. “Yeasts. General Survey.” In Handbook of Microbiology. Vol. I. Organismic Microbiology. A. I. Laskin and H. A. Lechevalier, eds. Cleveland, Ohio: CRC Press.Google Scholar
  136. McMurrough, I., and Palmer, V. 1979. Lactic acid production in sweet worts. J. Inst. Brew. 85: 11–14.Google Scholar
  137. Mann, D. L. 1986. Milling and baking in Scotland. Proc. Roy. Soc. Edinburgh 87B: 241–254.Google Scholar
  138. Marsili, R. T. 1981. Monitoring bacterial metabolites in cultured buttermilk by high performance liquid chromatography and headspace gas chromatography. J. Chromatogr. Sci. 19: 451–456.Google Scholar
  139. Martin, A. M., and White, M. D. 1985. Growth of the acid-tolerant fungus Scytalidium acidophilum as a potential source of single-cell protein. Food Sci. 50: 197–200.CrossRefGoogle Scholar
  140. Martini, A. E. V.; Miller, M. W.; and Martini, A. 1979. Amino acid composition of whole cells of different yeasts. J. Agr. Food. Chem. 27: 982–984.CrossRefGoogle Scholar
  141. Mason, M. 1983. Ethanol determination in wine with an immobilized enzyme electrode. Amer. J. Enol. Vitic. 34: 173–175.Google Scholar
  142. Meilgaard, M. C. 1982. Prediction of flavor differences between beers from their chemical composition./ Agr. Food Chem. 30: 1009–1017.CrossRefGoogle Scholar
  143. Meyer, O. 1980. Using carbon monoxide to produce single-cell protein. BioScience 30: 405–407.Google Scholar
  144. Molina, O. E.; Perotti deGâlvez, N. I.; Frigerio, C. I.; and Córdoba, P. R. 1984. Single cell protein production from bagasse pith pretreated with sodium hydroxide at room temperature. Appi. Microbiol. Biotechnol. 20: 335–339.CrossRefGoogle Scholar
  145. Monroe, R. J.; Etchells, J. L.; Pacilio, J. C.; Borg, A. F.; Wallace, D. H.; Rogers, M. P.; Turney, L. J.; and Schoene, E. S. 1969. Influence of various acidities and pasteurizing temperatures on the keeping quality of fresh-pack dill pickles. Food Technol. 23: 71–78.Google Scholar
  146. Moon, N. J., and Reinhold, G. W. 1976. Commensalism and competition in mixed cultures of Lactobacillus bulgaricus and Streptococcus thermophilus. J. Milk Food Technol. 39: 337–341.Google Scholar
  147. Mueller, D. L.; Reed, S. J.; and Barkate, J. A. 1979. Rapid automated turbidimetric assay for chlortetracycline hydrochloride, using Leuconostoc mesenteroides as the test organism. J. Assoc. Offic. Anal. Chem. 62: 160–167.Google Scholar
  148. Nakamatsu, T.; Akamatsu, T.; Miyajima, R.; and Shiio, I. 1975. Microbial production of glucose oxidase. Agr. Biol. Chem. 39: 1803–1811.CrossRefGoogle Scholar
  149. Nunomura, N.; Susaki, M.; Asao, Y.; and Yokotsuka, T. 1976a. Identification of volatile components in shoyu (soy sauce) by gas chromatography-mass spectrometry. Agr. Biol. Chem. 40: 485–490.CrossRefGoogle Scholar
  150. Nunomura, N. 1976b. Isolation and identification of 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone, as a flavor component in shoyu (soy sauce). Agr. Biol. Chem. 40: 491–495.CrossRefGoogle Scholar
  151. Nunomura, N.; Sasaki, M.; and Yokotsuka, T. 1984. Shoyu (soy sauce) flavor components: Neutral fraction. Agr. Biol. Chem. 48: 1753–1762.Google Scholar
  152. Okuhara, A. 1985. Vinegar production with Acetobacter grown on a fibrous support. J. Ferment. Technol. 63: 57–60.Google Scholar
  153. Orberg, P. K., and Sandine, W. E. 1985. Plasmid linkage of proteinase and lactose fermentation in Streptococcus lactis NCDO 1404. J. Dairy Sci. 68: 572–580.CrossRefGoogle Scholar
  154. Osaki, K.; Okamoto, Y.; Akao, T.; Nagata, S.; and Takamatsu, H. 1985. Fermentation of soy sauce with immobilized whole cells. J. Food Sci. 50: 1289–1292.CrossRefGoogle Scholar
  155. Panchal, C. J.; Russell, I.; Sills, A. M.; and Stewart, G. G. 1984. Genetic manipulation of brewing and related yeast strains. Food Technol. 38(2): 99–106, 111.Google Scholar
  156. Parliment, T. H.; Kolor, M. G.; and Rizzo, D. J. 1982. Volatile components of limburger cheese./ Agr. Food Chem. 30: 1006–1008.CrossRefGoogle Scholar
  157. Patel, I. B., and Vaughn, R. H. 1973. Cellulolytic bacteria associated with sloughing spoilage of California ripe olives. Appi. Microbiol. 25: 62–69.Google Scholar
  158. Pavlostathis, S. G., and Gossett, J. M. 1985. Modeling alkali consumption and digestibility improvement from alkaline treatment of wheat straw. Biotechnol. Bioeng. 27: 345–354.CrossRefGoogle Scholar
  159. Pederson, C. S. 1979. Microbiology of Food Fermentations. 2d ed. Westport, Conn.: AVI Publishing Company.Google Scholar
  160. Peitersen, N. 1975a. Production of cellulase and protein from barley straw by Trichoderma viride. Biotechnol. Bioeng. 17: 361–374.CrossRefGoogle Scholar
  161. Peitersen, N. 1975b. Cellulase and protein production from mixed cultures of Trichoderma viride and a yeast. Biotechnol. Bioeng. 17: 1291–1299.CrossRefGoogle Scholar
  162. Ponte, J. G., Jr.; and Reed, G. 1982. “Bakery Foods.” In Prescott andDunn’s Industrial Microbiology. 4th ed. G. Reed, ed. Westport, Conn.: AVI Publishing Co, Inc.Google Scholar
  163. Potts, E. A., and Fleming, H. P. 1982. Prevention of mold-induced softening in air-purged, brined cucumbers by acidification. J. Food Sci. 47: 1723–1727.CrossRefGoogle Scholar
  164. Prevost, H.; Divies, C.; and Rousseau, E. 1985. Continuous yoghurt production with Lactobacillus bulgaricus and Streptococcus thermophilus entrapped in Ca-alginate. Biotechnol. Lett. 7: 247–252.CrossRefGoogle Scholar
  165. Radke-Mitchell, L., and Sandine, W. E. 1984. Associative growth and differential enumeration of Streptococcus thermophilus and Lactobacillus bulgaricus: A review./ Food Prot 47: 245–248.Google Scholar
  166. Rajkowski, K. T.; Peeler, J. T.; and Messer, J. W. 1986. Detectability levels of four betalactam antibiotics in eight milk products using the AOAC Bacillus stearothermophilus disc assay./ Food Prot. 49: 687–690.Google Scholar
  167. Rale, V. B. 1984. SCP from pineapple (Ananas sativa Schutt) cannery effluents. Eur. J Appi. Microbiol. Biotechnol. 19: 106–109.CrossRefGoogle Scholar
  168. Rao, P. V., and Hahn, S. K. 1984. An automated enzymic assay for determining the cyanide content of cassava (Manihot esculenta Crantz) and cassava products. J. Sci. Food Agr. 35: 426–436.Google Scholar
  169. Rash, K. E., and Kosikowski, F. V. 1982. Influence of lactic acid starter bacteria on enteropathogenic Escherichia coli in ultrafiltration prepared Camembert cheese./ Dairy Sci. 65: 537–543.Google Scholar
  170. Rathlev, T.; Hocko, J. M.; Franks, G. F.; Suffin, S. C.; O’Donnell, C. M.; and Porter, D. D. 1981. Glucose oxidase immunoenzyme methodology as a substitute for fluorescence microscopy in the clinical laboratory. Clin. Chem. 27: 1513–1515.Google Scholar
  171. Reed, G. 1981. Use of microbial cultures: Yeast products. Food Technol. 35: 89–94.Google Scholar
  172. Reed, G. 1982. Prescott andDunn’s Industrial Microbiology. 4th ed. Westport, Conn.: AVI Publish- ing Co., Inc.Google Scholar
  173. Reeves, G. W. 1983. Wine filtration in the bottling cellar. Food Technol. Aust. 35: 28–33. Renneberg, R.; Riedel, K.; and Scheller, E 1985. Microbial sensor for aspartame. App. Microbiol. Biotechnol. 21: 180–181.Google Scholar
  174. Ridha, S. H.; Crawford, R. J. M.; and Tamime, A. Y. 1984. Comparative studies of casein breakdown in Cheddar cheese manufactured from lactose-hydrolysed milk. J. Food Prot. 47: 381–387.Google Scholar
  175. Romano, P.; Soli, M. G.; Suzzi, G.; Grazia, L.; and Zambonelli, C. 1985. Improvement of a wine Saccharomyces cerevisiae strain by a breeding program. Appi. Environ. Microbiol. 50: 1064–1067.Google Scholar
  176. Rosini, G.; Federici, F.; Vaughn, A. E.; and Martini, A. 1982. Systematics of the species of the yeast genus Saccharomyces associated with the fermentation industry. Eur. J. Appl. Microbiol. Biotechnol. 15: 188–193.CrossRefGoogle Scholar
  177. Roy, R. B. 1979. An improved semiautomated enzymatic assay of lysine in foodstuffs. J. Food Sci. 44: 480–482, 487.Google Scholar
  178. Russell, I.; Crumplen, C. M.; Jones, R. M.; and Stewart, G. G. 1986. Efficiency of genetically engineered yeast in the production of ethanol from dextrinized cassava starch. Biotechnol. Lett. 8: 169–174.CrossRefGoogle Scholar
  179. Ryther, J. H., and Goldman, J. C. 1975. Microbes as food in mariculture Annu. Rev. Microbiol. 29: 429–443.CrossRefGoogle Scholar
  180. Saddler, J. N. 1986. Factors limiting the efficiency of cellulase enzymes. Microbiol. Sci. 3 (3): 84–87.Google Scholar
  181. Samish, Z.; Cohen, S.; and Ludin, A. 1968. Progress of lactic acid fermentation of green olives as affected by peel. Food Technol. 22: 1009–1012.Google Scholar
  182. Sarwar, G.; Shah, B. G.; Mongeau, R., and Hoppner, K. 1985. Nucleic acid, fiber and nutrient composition of inactive dried food yeast products. J. Food Sci. 50: 353–357.CrossRefGoogle Scholar
  183. Scanlan, R. A.; Barbour, J. F.; Hotchkiss, J. H.; and Libbey, L. M. 1980. N-nitrosodimethylamine in beer. Food Cosmet. Toxicol. 18: 27–29.CrossRefGoogle Scholar
  184. Scherwitz, K. M.; Baldwin, K. A.; and McKay, L. L. 1983. Plasmid linkage of a bacteriocinlike substance in Streptococcus lactis subsp. diacetylactis strain WM4: Transferability to Streptococcus lactis. App. Environ. Microbiol. 45: 1506–1512.Google Scholar
  185. Schwimmer, S. 1981. Source Book of Food Enzymology. Westport, Conn.: AVI Publishing Co., Inc.Google Scholar
  186. Scott, R. S.; Anders, T. G.; and Hums, N. 1981. Rapid cold stabilization of wine by filtration. Amer. J. Enol. Vitic. 32: 138–143.Google Scholar
  187. Seager, M. S.; Banks, J. G.; Blackburn, C. W.; and Board, R. G. 1986. A taxonomic study of Staphylococcus spp. isolated from fermented sausages. J. Food Sci. 51: 295–297.CrossRefGoogle Scholar
  188. Seiling, S. 1969. Equipment demands of changing production requirements. Bakers Dig. 45 (5): 54–59.Google Scholar
  189. Seki, T.; Choi, E.; and Ryu, D. 1985. Construction of killer wine yeast strain. App. Environ. Microbiol. 49: 1211–1215.Google Scholar
  190. Sellars, R. L. 1981. Fermented dairy foods. J. Dairy Sci. 64: 1070–1076.CrossRefGoogle Scholar
  191. Shacklady, C. A. 1972. “Nutritional Qualities of Single-Cell Proteins.” In Health and Food. G. G. Birch, L. F. Green, and L. G. Plaskett, eds., London: Applied Science Publishers.Google Scholar
  192. Shannon, D. W. E; McNab, J. M., and Anderson, G. B. 1976. Use of an n-paraffin-grown yeast in diets for replacement pullets and laying hens. J. Sci. Food Agr. 27: 471–476.CrossRefGoogle Scholar
  193. Sharma, H. S.; Bassette, R.; Mehta, R. S.; and Dayton, A. D. 1980. Yield and curd characteristics of cottage cheese made by the culture and direct-acid-set methods. J. Food Prot. 43: 441–446.Google Scholar
  194. Sharpe, F. R., and Laws, D. R. J. 1981. The essential oil of hops. J. Inst. Brew. 87: 96–107. Shay, L. K., and Wegner, G. H. 1986. Nonpolluting conversion of whey permeate to food yeast protein. J. Dairy Sci. 69: 676–683.Google Scholar
  195. Shen, C. J.; Chen, I. S.; and Sheppard, A. J. 1982. Enzymatic determination of cholesterol in egg yolk. J. Assoc. Offic. Anal. Chem. 65: 1222–1224.Google Scholar
  196. Shetty, K.J., and Kinsella, J. E. 1979. Preparation of yeast protein isolate with low nucleic acid by succinylation. J. Food Sci. 44: 633–638.CrossRefGoogle Scholar
  197. Shilo, M. 1967. Formation and mode of action of algal toxins. Bacteriol. Rev. 31: 180–193.Google Scholar
  198. Shimizu, K.; Adachi, T.; Kitano, K.; Shimazaki, T.; Totsuka, A.; Hara, S.; and Dittrich, H. H. 1985. Killer properties of wine yeasts and characterization of killer wine yeasts. J. Ferment. Technol. 63: 421–429.Google Scholar
  199. Simpson, R. F.; Bennett, S. B.; and Miller, G. C. 1983. Oxidative pinking of white wines: A note on the influence of sulphur dioxide and ascorbic acid. Food Technol. Aust. 35: 34–37.Google Scholar
  200. Sinai, Y.; Kaplun, A.; Hai, Y.; and Halperin, B. 1974. Enhancement of resistance to infec- tious diseases by oral administration of brewer’s yeast. Infec. Immunity 9: 781–787.Google Scholar
  201. Sing, W. D., and Klaenhammer, T. R. 1986. Conjugal transfer of bacteriophage resistance determinants of pTR2030 into Streptococcus cremoris strains. App. Environ. Microbiol. 51: 1264–1271.Google Scholar
  202. Skrede, G. 1983. An enzymic method for the determination of starch in meat products. Food Chem. 11: 175–185.CrossRefGoogle Scholar
  203. Smith, J. L., and Palumbo, S. A. 1983. Use of starter cultures in meats. J. Food Prot. 46: 997–1006.Google Scholar
  204. Snow, R. 1985. Genetic engineering of a yeast strain for malolactic fermentation of wine. Food Technol. 39(10): 96–101, 109.Google Scholar
  205. Somers, T. C., and Ziemelis, G. 1985. Flavonol haze in white wines. Vitis 24: 43–50. Sood, V. K., and Kosikowski, F. V. 1979. Accelerated Cheddar cheese ripening by added microbial enzymes. J. Dairy Sci. 62: 1865–1872.Google Scholar
  206. Speck, M. L. 1981. Use of microbial cultures: Dairy products. Food Technol. 35 (1): 71–73.Google Scholar
  207. Spiegelhalder, B.; Eisenbrand, G.; and Preussmann, R. 1979. Contamination of beer with trace quantities of N-nitrosodimethylamine. Food Cosmet. Toxicol. 17: 29–31.CrossRefGoogle Scholar
  208. Sugihara, T. F.; Kline, L.; and Miller, M. W. 1971. Microorganisms of the San Francisco sour dough bread process. I. Yeasts responsible for the leavening action. Appi. Microbiol. 21: 456–458.Google Scholar
  209. Suzzi, G.; Romano, P.; and Zambonelli, C. 1985. Saccharomyces strain selection in minimizing SO2 requirement during vinification. Amer. J. Enol. Vitic. 36: 199–202.Google Scholar
  210. Tamime, A.Y., and Deeth, H. C. 1980. Yogurt: Technology and biochemistry. J. Food Prot. 43: 939–977.Google Scholar
  211. Taniguchi, M.; Kometani, Y.; Tanaka, M.; Matsuno, R.; and Kamikubo, T. 1982. Production of single-cell protein from enzymatic hydrolyzate of rice straw. Eur.J. Appi. Microbiol. Biotechnol. 14: 74–80.Google Scholar
  212. Teuber, M., and Lembke, J. 1983. The bacteriophages of lactic acid bacteria with emphasis on genetic aspects of group N lactic streptococci. Antonie van Leeuwenhoek 49: 283295.Google Scholar
  213. Thornton, R. J. 1983. New yeast strains from old-the application of genetics of wine yeasts. Food Technol. Aust. 35: 46–50.Google Scholar
  214. Thornton, R. J. 1985. The introduction of flocculation into a homothallic wine yeast. A practical example of the modification of winemaking properties by the use of genetic techniques. Amer. J Enol. Vitic. 36: 47–49.Google Scholar
  215. Tonogai, Y.; Kingkate, A.; Thanissorn, W.; and Punthanaprated, U. 1983. Enzymatic determination of L-glutamic acid (L-glutamate) in fish sauces and instant noodles. J Food Prot. 46: 522–524.Google Scholar
  216. Trivedi, N. B.; Cooper, E. J.; and Bruinsma, B. L. 1984. Development and applications of quick-rising yeast. Food Technol. 38: 51, 54–55, 57.Google Scholar
  217. Tuffnell, J. M., and Payne, J. W. 1985. A colorimetric enzyme assay using Escherichia coli to determine nutritionally available lysine in biological materials. J. App. Bacteriol. 58: 333–341.Google Scholar
  218. Umemura, I.; Takamatsu, S.; Sato, T.; Tosa, T.; and Chibata, I. 1984. Improvement of production of L-aspartic acid using immobilized microbial cells. Appt. Microbiol. Biotechnol. 20: 291–295.Google Scholar
  219. Van Der Walt, J. P. 1970. “Genus 16. Saccharomyces Meyen emend. Reess.” In The Yeasts. A Taxonomic Study. J. Lodder, ed. Amsterdam-London: North-Holland Publishing Company.Google Scholar
  220. Vaughn, R. H.; Jakubczyk, T.; MacMillan, J. D.; Higgins, T. E.; Dave, B. A.; and Crampton, V. M. 1969. Some pink yeasts associated with softening of olives. Appt. Microbiol. 18: 771–775.Google Scholar
  221. Vaughn, R. H.; Stevenson, K. E.; Dave, B. A.; and Park, H. C. 1972. Fermenting yeasts associated with softening and gas-pocket formation in olives. App. Microbiol. 23: 316320.Google Scholar
  222. Verzele, M. 1986. 100 years of hop chemistry and its relevance to brewing. J. Inst. Brew. 92: 32–48.Google Scholar
  223. Wada, M.; Uchida, T.; Kato, J.; and Chibata, I. 1980. Continuous production of L-isoleucine using immobilized growing Serratia marcescens cells. Biotechnol. Bioeng. 22: 1175 1188.Google Scholar
  224. Wainright, T. 1986. The chemistry of nitrosamine formation: Relevance to malting and brewing. J. Inst. Brew. 92: 49–64.Google Scholar
  225. Wainwright, T. 1986. Nitrosamines in malt and beer./ Inst. Brew. 92: 73–80.Google Scholar
  226. Waites, M. J., and Bamforth, C. W. 1984. The determination of ethanol in beer using a bioelectrochemical cell./ Inst. Brew. 90: 33–36.Google Scholar
  227. Walton, H. M., and Eastman, J. E. 1973. Insolubilized amylases. Biotechnol. Bioeng. 15: 951–962.CrossRefGoogle Scholar
  228. Wang, H. L., and Hesseltine, C. W. 1982. “Oriental Fermented Foods.” In Prescott and Dunn’s Industrial Microbiology. 4th ed. G. Reed, ed. Westport, Conn.: AVI Publishing Co., Inc.Google Scholar
  229. Waslien, C. I., and Steinkraus, K. H. 1980. The potential of microbial cells as protein for man. BioScience 30: 397–398.Google Scholar
  230. Wasserman, B. P. 1984. Thermostable enzyme production. Food Technol. 38(2): 78, 80–89, 98.Google Scholar
  231. Watanabe, E.; Toyama, K.; Karube, I.; Matsuoka, H.; and Suzuki, S. 1984. Enzyme sensor for hypoxanthine and inosine determination in edible fish. Appl. Microbiol. Biotechnol. 19: 18–22.CrossRefGoogle Scholar
  232. Weetall, H. H., and Pitcher, W. H., Jr. 1986. Scaling up an immobilized enzyme system. Science 232: 1396–1403.CrossRefGoogle Scholar
  233. Wilkinson, J. F. 1971. “Hydrocarbons as a Source of Single-Cell Protein.” In Microbes and Biological Productivity. D. E. Hughes and A. H. Rose, eds. Twenty-first Symposium of the Soc. Gen. Microbiol. Cambridge, England: The University Press.Google Scholar
  234. Williams, S. A.; Hodges, R. A.; Strike, T. L.; Snow, R.; and Kunkee, R. E. 1984. Cloning the gene for the malolactic fermentation of wine from Lactobacillus delbrueckii in Escherichia coli and yeasts. Appi. Environ. Microbiol. 47: 288–293.Google Scholar
  235. Wingard, L. B., Jr.; Castner, J. F.; Yao, S. J.; Wolfson, S. K., Jr.; Drash, A. L.; and Liu, C. C. 1984. Immobilized glucose oxidase in the potentiometric detection of glucose. Appl. Biochem. Biotechnol. 9: 95–104.CrossRefGoogle Scholar
  236. Wongkhalaung, C.; Kashiwagi, Y.; Magae, Y.; Ohta, T.; and Sasaki, T. 1985. Cellulase immobilized on a solid polymer. Appl. Microbiol. Biotechnol. 21: 37–41.CrossRefGoogle Scholar
  237. Yang, H.; Thayer, D. W.; and Yang, S. P. 1979. Reduction of endogenous nucleic acid in a single-cell protein. Appi. Environ. Microbiol. 38: 143–147.Google Scholar
  238. Yang, H. H.; Yang, S. P.; and Thayer, D. W. 1977. Evaluation of the protein quality of single-cell protein produced from mesquite. Food Sci. 42: 1247–1250.CrossRefGoogle Scholar
  239. Yang, H. Y. 1973. Effect of pH on the activity of Schizosaccharomyces pombe. J. Food Sci. 38: 1156–1157.CrossRefGoogle Scholar

Copyright information

© Van Nostrand Reinhold 1989

Authors and Affiliations

  • George J. Banwart
    • 1
  1. 1.Department of MicrobiologyThe Ohio State UniversityUSA

Personalised recommendations