Factors That Affect Microbial Growth in Food

  • George J. Banwart


Food microbiologists need a knowledge of the factors that influence microbial growth. Desirable growth conditions are needed for enumeration, fermentations, or the production of single-cell protein. Undesirable conditions are used for food preservation.


Water Activity Microbial Growth Clostridium Botulinum Aspergillus Parasiticus Shell Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Bar, N. M., and Harris, N. D. 1984. Inhibitory effect of Lactobacillus bulgaricus on psychrotrophic bacteria in associative cultures and in refrigerated foods. J. Food Prot. 47: 61–64.Google Scholar
  2. Acton, J. C., and Dick, R. L. 1976. Composition of some commercial dry sausages. J. Food Sci. 41: 971–972.CrossRefGoogle Scholar
  3. Aguerre, R. J.; Suarez, C.; and Viollaz, P. E. 1983. Moisture desorption isotherms of rough rice. J. Food Technol. 18: 345–351.CrossRefGoogle Scholar
  4. Alderman, G. G., and Marth, E. H. 1976. Inhibition of growth and aflatoxin production of Aspergillus parasiticus by citrus oils. Z. Lebensm. Unters.-Forsch. 160: 353–358.CrossRefGoogle Scholar
  5. Ananthaswamy, H. N., and Eisenstark, A. 1977. Repair of hydrogen peroxide-induced single-strand breaks in Escherichia coli deoxyribonucleic acid.,. Bacteriol. 130: 187–191.Google Scholar
  6. Anders, R. E; Hogg, D. M.; and Jago, G. R. 1970. Formation of hydrogen peroxide by group N streptococci and its effect on their growth and metabolism. Appi. Microbiol. 19: 608–612.Google Scholar
  7. Anderson, D. G., and McKay, L. L. 1983. Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appi. Environ. Microbiol. 46: 549–552.Google Scholar
  8. Anderson, R. E. 1984. Growth and corresponding elevation of tomato juice pH by Bacillus coagulans. J. Food Sci. 49: 647–649.CrossRefGoogle Scholar
  9. APHA. 1984. Compendium of Methods of the Microbiological Examination of Foods. 2d Ed. M. L. Speck, ed. Washington, D. C.: American Public Health Association.Google Scholar
  10. Azzouz, M. A., and Bullerman, L. B. 1982. Comparative antimycotic effects of selected herbs, spices, plant components and commercial antifungal agents. J. Food Prot. 45: 1298–1301.Google Scholar
  11. Bachrach, U., and Weinstein, A. 1970. Effect of aliphatic polyamines on growth and macromolecular syntheses in bacteria. J. Gen. Microbiol. 60: 159–165.Google Scholar
  12. Baird-Parker, A. C., and Freame, B. 1967. Combined effect of water activity, pH and temperature on the growth of Clostridium botulinum from spore and vegetative cell inocula. J Appl. Bacteriol. 30: 420–429.CrossRefGoogle Scholar
  13. Barber, L. E., and Deibel, R. H. 1972. Effect of pH and oxygen tension on staphylococcal growth and enterotoxin formation in fermented sausage. Appl. Microbiol. 24: 891–898.Google Scholar
  14. Barbour, E. K.; Nabbut, N. H.; Frerichs, W. M., and Al-Nakhli, H. M. 1984. Inhibition of pathogenic bacteria by camel’s milk: relation to whey lysozyme and stage of lactation. J. Food Prot. 47: 838–840.Google Scholar
  15. Barr, J. G. 1975. Changes in the extracellular accumulation of antibiotics during growth and sporulation of Bacillus subtilis in liquid culture. J Appl. Bacteriol. 39: 1–13.CrossRefGoogle Scholar
  16. Barr, J. G. 1976. Effects of volatile bacterial metabolites on the growth, sporulation and mycotoxin production of fungi. J Sci. Food Agr. 27: 324–330.CrossRefGoogle Scholar
  17. Beall, P. T. 1983. States of water in biological systems. Cryobiology 20: 324–334.CrossRefGoogle Scholar
  18. Benjilali, B.; Tantaoui-Elaraki, A.; Ayadi, A.; and Ihlal, M. 1984. Method to study antimicrobial effects of essential oils: Application to the antifungal activity of six Moroccan essences. J Food Prot. 47: 748–752.Google Scholar
  19. Beuchat, L. R. 1981. Microbial stability as affected by water activity. Cereal Foods World 26: 345–349.Google Scholar
  20. Beuchat, L. R. 1982. Effects of environmental stress in recovery media on colony formation by sublethally heat-injured Saccharomyces cerevisiae. Trans. Brit. Mycol. Soc. 78: 536–540.Google Scholar
  21. Beuchat, L. R. 1983. Influence of water activity on growth, metabolic activities and survival of yeasts and molds. J. Food Prot. 46: 135–141.Google Scholar
  22. Bishop, J. G.; Schanbacher, F. L.; Ferguson, L. C.; and Smith, K. L. 1976. In vitro growth inhibition of mastitis-causing coliform bacteria by bovine apo-lactoferrin and reversal of inhibition by citrate and high concentrations of apo-lactoferrin. Infec. Immunity 14: 911–918.Google Scholar
  23. Blankenship, L. C. 1981. Some characteristics of acid injury and recovery of Salmonella bareilly in a model system. J. Food. Prot. 44: 73–77.Google Scholar
  24. Board, R. G. 1980. The avian eggshell-A resistance network. J. Appt Bacterial. 48: 303–313.CrossRefGoogle Scholar
  25. Bogin, E., and Abrams, M. 1976. The effect of garlic extract on the activity of some enzymes. Food Cosmet. Toxicol. 14: 417–419.CrossRefGoogle Scholar
  26. Boonchird, C., and Flegel, T. W. 1982. In vitro antifungal activity of eugenol and vanillin against Candida albicans and Cryptococcus neoformans. Can. J. Microbiol. 28: 1235–1241.CrossRefGoogle Scholar
  27. Bucker, E. R., and Martin, S. E. 1982. Effect of free-radical scavengers on enumeration of thermally stressed cells of Staphylococcus aureus MF-31. Appi. Environ. Microbiol. 43: 1020–1025.Google Scholar
  28. Burkholder, P. R. 1952. Cooperation and conflict among primitive organisms. Amer. Sci. 40: 601–631Google Scholar
  29. Bussey, H., and Skipper, N. 1976. Killing of Torulopsis glabrata by Saccharomyces cerevisiae killer factor. Antimicrob. Agents Chemother. 9: 352–354.Google Scholar
  30. Campbell, R. J.; Egan, A. F.; Grau, F. H.; and Shay, B.J. 1979. The growth of Micro bacterium thermosphactum on beef. J. Appi. Bacterial. 47: 505–509.CrossRefGoogle Scholar
  31. Camper, A. K., and McFeters, G. A. 1979. Chlorine injury and the enumeration of waterborne coliform bacteria. Appi. Environ. Microbiol. 37: 633–641.Google Scholar
  32. Carroll, E. J. 1979. The role of lysozyme in killing and lysis of coliform bacteria in the bovine animal. I. Serum and milk concentrations of lysozyme and susceptibility of coliform strains to its action. Vet. Microbiol. 4: 61–72.CrossRefGoogle Scholar
  33. Caruso, F. L., and Kue, J. 1979. Induced resistance of cucumber to anthracnose and angular leaf spot by Pseudomonas lachrymans and Colletotrichum lagenarium. Physiol. Plant Pathol. 14: 191–201.CrossRefGoogle Scholar
  34. Christian, J. H. B. 1955. The influence of nutrition on the water relations of Salmonella oranienburg. Aust. J. Biol. Sci. 8: 75–82.Google Scholar
  35. Chu, N. T.; Clydesdale, F. M.; and Francis, E J. 1973. Isolation and identification of some fluorescent phenolic compounds in cranberries. J. Food. Sci. 38: 1038–1042.CrossRefGoogle Scholar
  36. Cobb, B. F.; Vanderzant, C.; Thompson, C. A., Jr.; and Custer, C. S. 1973. Chemical characteristics, bacterial counts, and potential shelf-life of shrimp from various locations on the northwestern Gulf of Mexico. J Milli Food Technol. 36: 463–468.Google Scholar
  37. Collins-Thompson, D. L.; Aris, B.; and Hurst, A. 1973. Growth and enterotoxin B synthesis by Staphylococcus aureus S6 in associative growth with Pseudomonas aeruginosa. Can. J Nlicrobiol. 19: 1197–1201.CrossRefGoogle Scholar
  38. Collins-Thompson, D. L.; Wood, D. S.; and Beveridge, T. J. 1983. Characteristics of the inhibition of Brochothrix thermosphacta by Lactobacillus brevis. J. Food Prot. 46: 403–407.Google Scholar
  39. Conner, D. E., and Beuchat, L. R. 1984. Sensitivity of heat-stressed yeasts to essential oils of plants. App. Environ. Microbiol. 47: 229–233.Google Scholar
  40. Currie, R. W., and Wolfe, F. H. 1980. Rigor related changes in mechanical properties (tensile and adhesive) and extracellular space in beef muscle. Meat Sci. 4: 123–143.CrossRefGoogle Scholar
  41. Dallyn, H., and Everton, J. R. 1970. Observations on the sporicidal action of vegetable oils used in fish canning. J. Appi. Bacteriol. 33: 603–608.CrossRefGoogle Scholar
  42. Davis, D. V., and Cooks, R. G. 1982. Direct characterization of nutmeg constituents by mass spectrometry-mass spectrometry. J. Agr. Food Chem. 30: 495–504.CrossRefGoogle Scholar
  43. Devore, D. P., and Solberg, M. 1974. Oxygen uptake in postrigor bovine muscle. J. Food Sci. 39: 22–28.CrossRefGoogle Scholar
  44. DeWit, J. C.; Notermans, S.; Gorin, N.; and Kampelmacher, E. H. 1979. Effect of garlic oil or onion oil on toxin production by Clostridium botulinum in meat slurry. J Food Prot. 42: 222–224.Google Scholar
  45. Dolby, J. M., and Honour, P. 1979. Bacteriostasis of Escherichia coli by milk. IV. The bacteriostatic antibody of human milk. J Hyg. Camb. 83: 255–265.CrossRefGoogle Scholar
  46. Douglas, F.; Hambleton, R.; and Rigby, G. J. 1973. An investigation of the oxidation-reduction potential and of the effect of oxygen on the germination and outgrowth of Clostridium butyricum spores using platinum electrodes. J Appi. Bacteriol. 36: 625–633.CrossRefGoogle Scholar
  47. Douglas, E, and Rigby, G. J. 1974. The effect of oxygen on the germination and outgrowth of Clostridium butyricum spores and changes in the oxidation-reduction potential of cultures. J Appi. Bacteriol. 37: 251–259.CrossRefGoogle Scholar
  48. Eberle, H., and Masker, W. 1971. Effect of nalidixic acid on semiconservative replication and repair synthesis after ultraviolet irradiation in Escherichia coli. J. Bacteriol. 105: 908–912.Google Scholar
  49. Eddy, B. P. 1960. The use and meaning of the term psychrophilic. J. Appi. Bacteriol. 23: 189–190.CrossRefGoogle Scholar
  50. Egan, A. F. 1979. Enumeration of stressed cells of Escherichia coli. Can. J. Microbiol. 25: 116–118.CrossRefGoogle Scholar
  51. Eisenstark, A., and Ruff, D. 1970. Repair in phage and bacteria inactivated by light from fluorescent and photo lamps. Biochem. Biophys. Res. Commun. 38: 244–248.CrossRefGoogle Scholar
  52. Elkhalifa, E. A.; Anglemier, A. F.; Kennick, W. H.; and Elgasim, E. A. 1984. Influence of prerigor pressurization on postmortem beef muscle creatine phosphokinase activity and degradation of creatine phosphate and adenosine triphosphate. J. Food Sci. 49: 595–597.CrossRefGoogle Scholar
  53. Emodi, A. S., and Lechowich, R. V. 1969. Low temperature growth of type E Clostridium botulinum spores. 1. Effects of sodium chloride, sodium nitrite and pH. J Food Sci. 34: 78–81.CrossRefGoogle Scholar
  54. Fair, W. R., and Wehner, N. 1971. Antibacterial action of spermine: Effect on urinary tract pathogens. Appl. Microbiol. 21: 6–8.Google Scholar
  55. Favetto, G.; Resnick, S. L.; and Chirife, J. 1984. Sensor contamination with organic volatiles during water activity measurements with an electric hygrometer. J Food Sci. 49: 514–515, 546.Google Scholar
  56. Favetto, G.; Resnick, S.; Chirife, J.; and Ferro Fontan, C. 1983. Statistical evaluation of water activity measurements obtained with the Vaisala Humicap humidity meter. J Food Sci. 48: 534–538.CrossRefGoogle Scholar
  57. Federici, F., and Bongi, G. 1983. Improved method for isolation of bacterial inhibitors from oleuropein hydrolysis. Appl. Environ. Microbial. 46: 509–510.Google Scholar
  58. Feeney, R. E., and Nagy, D. A. 1952. The antibacterial activity of the egg white protein conalbumin. J. Bacteriol. 64: 629–643.Google Scholar
  59. Ferro Fontan, C., and Chirife, J. 1981. The evaluation of water activity in aqueous solutions from freezing point depression. J. Food Technol. 16: 21–30.CrossRefGoogle Scholar
  60. Ferro Fontan, C.; Chirife, J.; Sancho, E.; and Iglesias, H. A. 1982. Analysis of a model for water sorption phenomena in foods. J Food Sci. 47: 1590–1594.CrossRefGoogle Scholar
  61. Fett, H. M. 1973. Water activity determination in foods in the range of 0.80 to 0.99. J. Food Sci. 38: 1097–1098.CrossRefGoogle Scholar
  62. Fleming, H. P.; Walter, W. M. Jr.; and Etchells, J. L. 1973. Antimicrobial properties of oleuropein and products of its hydrolysis from green olives. Appl. Microbiol. 26: 777–782.Google Scholar
  63. Flores, S. C., and Crawford, D. L. 1973. Postmortem quality changes in iced Pacific shrimp (Pandalus jordani). J. Food Sci. 38: 575–579.CrossRefGoogle Scholar
  64. Foegeding, P. M., and Busta, F. F. 1981. Bacterial spore injury-An update. J. Food Prot. 44: 776–786.Google Scholar
  65. Forsyth, M. P., and Kushner, D. J. 1970. Nutrition and distribution of salt response in populations of moderately halophilic bacteria. Can. J. Microbiol. 16: 253–261.CrossRefGoogle Scholar
  66. Fukui, H.; Egawa, H.; Koshimizu, K.; and Mitsui, T. 1973. A new isoflavone with antifun- gal activity from immature fruits of Lupinus luteus. Agr. Biol. Chem. 37: 417–421.CrossRefGoogle Scholar
  67. Gadbois, T.; De Repentigny, J.; and Mathieu, L. G. 1973. Favorable effects in vitro and in vivo of two clinical isolates of Pseudomonas aeruginosa on nutritionally deficient Staphylococcus aureus strains. Can. J. Microbiol. 19: 973–981.CrossRefGoogle Scholar
  68. Gilbert, J. P.; Wooley, R. E.; Shotts, E. B., Jr.; and Dickens, J. A. 1983. Viricidal effects of Lactobacillus and yeast fermentation. App. Environ. Microbiol. 46: 452–458.Google Scholar
  69. Gilliland, S. E., and Speck, M. L. 1969. Biological response of lactic streptococci and lactobacilli to catalase. Appi. Microbiol. 17: 797–800.Google Scholar
  70. Goatcher, L. J., and Westhoff, D. C. 1975. Repression of Vibrio parahaemolyticus by Pseudomonas species isolated from processed oysters. J Food Sci. 40: 533–536.CrossRefGoogle Scholar
  71. Goodman, R. N. 1978. Inducible resistance responses in plants to plant pathogenic bacteria. Mycopathologia 65: 107–113.CrossRefGoogle Scholar
  72. Graham, J. M. 1978. Inhibition of Clostridium botulinum type C by bacteria isolated from mud. J. Appi. Bacteriol. 45: 205–211.CrossRefGoogle Scholar
  73. Graham, P. J., and Brenniman, G. R. 1983. Enumeration of chlorine-damaged fecal coliforms in wastewater effluents. J. Water Pollut. Control Fed. 55: 164–169.Google Scholar
  74. Grigg, G. W. 1972. Effects of coumarin, pyronin Y, 6,9-dimethyl 2-methyithiopurine and caffeine on excision repair and recombination repair in Escherichia coli. J. Gen. Microbiol. 70: 221–230.Google Scholar
  75. Hagler, A. N., and Lewis, M.J. 1974. Effect of glucose on thermal injury of yeast that may define the maximum temperature of growth. J. Gen. Microbiol. 80: 101–109.Google Scholar
  76. Halloin, J. M. 1983. Deterioration resistance mechanisms in seeds. Phytopathology 73: 335–339.CrossRefGoogle Scholar
  77. Hamm, R. 1982. Postmortem changes in muscle with regard to processing of hot-boned beef. Food Technol. 36 (11): 105–115.Google Scholar
  78. Harmon, R. J.; Schanbacher, F. L.; Ferguson, L. C.; and Smith, K. L. 1975. Concentration of lactoferrin in milk of normal lactating cows and changes occurring during mastitis. Amer. J. Vet. Res. 36: 1001–1007.Google Scholar
  79. Harrison, D. E. F. 1972. Physiological effects of dissolved oxygen tension and redox potential on growing populations of micro-organisms. J. Appi. Chem. Biotechnol. 22: 417–440.CrossRefGoogle Scholar
  80. Heinen, W., and Lauwers, A. M. 1981. Growth of bacteria at 100°C and beyond. Arch. Microbiol. 129: 127–128.CrossRefGoogle Scholar
  81. Hemming, B. C.; Orser, C.; Jacobs, D. L.; Sands, D. C.; and Strobel, G. A. 1982. The effects of iron on microbial antagonism by fluroescent pseudomonads. J. Plant Nutr. 5: 683–702.CrossRefGoogle Scholar
  82. Hentges, D.J., and Maier, B. R. 1972. Theoretical basis for anaerobic methodology. Amer. J. Clin. Nutr. 25: 1299–1305.Google Scholar
  83. Hibbitt, K. G.; Brownlie, J.; and Cole, C. B. 1971. The antimicrobial activity of cationic proteins isolated from the cells in bulk milk samples. J. Hyg. Camb. 69: 61–68.CrossRefGoogle Scholar
  84. Hitokoto, H.; Morozumi, S.; Wauke, T.; Sakai, S.; and Kurata, H. 1980. Inhibitory effects of spices on growth and toxin production of toxigenic fungi. App. Environ. Microbiol. 39: 818–822.Google Scholar
  85. Hocking, A. D., and Pitt, J. I. 1979. Water relations of some Penicillium species at 25°C. Trans Brit. Mycol. Soc. 73: 141–145.CrossRefGoogle Scholar
  86. Holmquist, G. U.; Walker, H. W.; and Stahr, H. M. 1983. Influence of temperature, pH, water activity and antifungal agents on growth of Aspergillus flavus and A. parasiticus. J. Food Sci. 48: 778–782.CrossRefGoogle Scholar
  87. Horner, K. J., and Anagnostopoulos, G. D. 1973. Combined effects of water activity, pH and temperature on the growth and spoilage potential of fungi. J. Appi. Bacteriol. 36: 427–436.CrossRefGoogle Scholar
  88. Hurst, A., and Hughes, A. 1981. Repair of salt tolerance and recovery of lost D-alanine and magnesium following sublethal heating of Staphylococcus aureus are independent events. Can. J. Microbiol. 27: 627–632.CrossRefGoogle Scholar
  89. Ishida, Y.; Ishido, T.; and Kadota, H. 1976. Temperature-pH effect upon germination of bacterial spores. Can. J. Microbiol. 22: 322–323.CrossRefGoogle Scholar
  90. Johnson, M. G.; Palumbo, S. A.; Rieck, V. T.; and Witter, L. D. 1970. Influence of temperature on steady-state growth of colonies of Pseudomonas fluorescens. J. Bacteriol. 103: 267–268.Google Scholar
  91. Juffs, H. S. 1972. Variation in psychrotroph counts obtained at the extremes of incubation prescribed by British standard 4285:1968. Aust. J. Dairy Technol. 27: 26–27.Google Scholar
  92. Juven, B.; Henis, Y.; and Jacoby, B. 1972. Studies on the mechanism of the antimicrobial action of oleuropein. J. Appl. Bacteriol. 35: 559–567.CrossRefGoogle Scholar
  93. Kalesperis, G. S.; Prahlad, K. V.; and Lynch, D. L. 1975. Toxigenic studies with the antibiotic pigments from Serratia marcescens. Can. J. Microbiol. 21: 213–220.CrossRefGoogle Scholar
  94. Katsui, N.; Tsuchido, T.; Takano, M.; and Shibasaki, I. 1982. Viability of heat-stressed cells of micro-organisms as influenced by pre-incubation and post-incubation temperatures. J. Appi. Bacteriol. 53: 103–108.CrossRefGoogle Scholar
  95. Kaufmann, O. W., and Marshall, R. S. 1965. Factors affecting the development of Clostridium botulinum in whole milk. Appl. Microbiol. 13: 521–526.Google Scholar
  96. King, A. D., Jr.; Halbrook, W. U.; Fuller, G.; and Whitehand, L. C. 1983. Almond nutmeat moisture and water activity and its influence on fungal flora and seed composition. J. Food Sci. 48: 615–617.CrossRefGoogle Scholar
  97. King, A. D., Jr., and Nagel, C. W. 1975. Influence of carbon dioxide upon the metabolism of Pseudomonas aeruginosa. J. Food. Sci. 40: 362–366.CrossRefGoogle Scholar
  98. Klebanoff, S. J., and Belding, M. E. 1974. Virucidal activity of H2O2-generating bacteria: Requirement for peroxidase and a halide. J. Infec. Dis. 129: 345–348.CrossRefGoogle Scholar
  99. Koburger, J. A. 1972. Fungi in foods. IV. Effect of plating medium pH on counts. J. Milk Food Technol. 35: 659–660.Google Scholar
  100. Konisky, J. 1982. Colicins and other bacteriocins with established modes of action. Annu. Rev. Microbiol. 36: 125–144.CrossRefGoogle Scholar
  101. Korpela, J., et al. 1984. Binding of avidin to bacteria and to the outer membrane porin of Escherichia coli. FEMS Microbiol. Letters 22: 3–10.CrossRefGoogle Scholar
  102. Koukalovâ, B., and Reich, J. 1981. Conversion of potentially lethal damage to lethal damage in Escherichia coli inhibited by caffeine. Int. J. Radiat. Biol. 40: 375–384.CrossRefGoogle Scholar
  103. Labuza, T. P.; Acott, K.; Tatini, S. R.; Lee, R. Y.; Flink, J.; and McCall, W. 1976. Water activity determination: A collaborative study of different methods. J. Food Sci. 41: 910–917.CrossRefGoogle Scholar
  104. Labuza, T. P.; Cassil, S.; and Sinskey, A. J. 1972. Stability of intermediate moisture foods. 2. Microbiology. J. Food Sci. 37: 160–162.CrossRefGoogle Scholar
  105. Labuza, T. P., and Contreras-Medellin, R. 1981. Prediction of moisture protection requirements for foods. Cereal Foods World 26: 335–343.Google Scholar
  106. Lauffenburger, D., and Calcagno, P. B. 1983. Competition between two microbial populations in a nonmixed environment: Effect of cell random motility. Biotechnol. Bioengr. 25: 2103–2125.CrossRefGoogle Scholar
  107. Lee, Y. B.; Hargus, G. L.; Hagberg, E. C.; and Forsythe, R. H. 1976. Effect of antemortem environmental temperatures on postmortem glycolysis and tenderness in excised broiler breast muscle. J. Food Sci. 41: 1466–1469.CrossRefGoogle Scholar
  108. Lillehoj, E. B., and Ciegler, A. 1970. Aflatoxin B1 effect on enzyme biosynthesis in Bacillus cereus and Bacillus licheniformis. Can. J. Microbiol. 16: 1059–1065.CrossRefGoogle Scholar
  109. Liu, T. S.; Snoeyenbos, G. H.; and Carlson, V. L. 1969. The effect of moisture and storage temperature on a Salmonella senftenberg 775W population in meat and bone meal. Poultry Sci. 48: 1628–1633.Google Scholar
  110. Love, R. M., and Haq, M. A. 1970. The connective tissues of fish. IV. Gaping of cod muscle under various conditions of freezing, and thawing. J. Food Technol. 5: 249–260.CrossRefGoogle Scholar
  111. Love, R. M.; Haq, M. A.; and Smith, G. L. 1972. The connective tissues of fish. V. Gaping in cod of different sizes as influenced by a seasonal variation in the ultimate pH. J. Food Technol. 7: 281–290.CrossRefGoogle Scholar
  112. Lund, B. M., and Wyatt, G. M. 1984. The effect of redox potential, and its interaction with sodium chloride concentration, on the probability of growth of Clostridium botulinum type E from spore inocula. Food Microbiol. 1: 49–65.Google Scholar
  113. McCracken, A. R., and Swinburne, T. R. 1980. Effect of bacteria isolated from surface of banana fruits on germination of Colletotrichum musae conidia. Trans. Brit. Mycol. Soc. 74: 212–214.CrossRefGoogle Scholar
  114. McDonald, L. C.; Hackney, C. R.; and Ray, B. 1983. Enhanced recovery of injured Escherichia coli by compounds that degrade hydrogen peroxide or block its formation. Appi. Environ. Microbiol. 45: 360–365.Google Scholar
  115. MacFarlane, T. W., and Makrides, H. C. 1982. A new screening method for investigating microbial interactions. J. Appl. Bacterial. 52: 271–274.CrossRefGoogle Scholar
  116. McFeters, G. A.; Cameron, S. C.; and LeChevallier, M. W. 1982. Influence of diluents, media, and membrane filters on detection of injured waterborne coliform bacteria. Appi. Environ. Microbiol. 43: 97–103.Google Scholar
  117. Mackey, B. M., and Derrick, C. M. 1982. A comparison of solid and liquid media for measuring the sensitivity of heat-injured Salmonella typhimurium to selenite and tetrathionate media, and the time needed to recover resistance. J. Appi. Bacterial. 53: 233–242.CrossRefGoogle Scholar
  118. MacMillan, W. G., and Hibbitt, K. G. 1973. Surface properties and natural defence in mammals. Pestic. Sci. 4: 863–870.CrossRefGoogle Scholar
  119. Martin, A. H.; Murray, A. C.; Jeremiah, L. E.; and Dutson, P.J. 1983. Electrical stimulation and carcass aging effects on beef carcasses in relation to postmortem glycolytic rates. J. Anim. Sci. 57: 1456–1462.Google Scholar
  120. Matsushima, K. 1958. An undescribed trypsin inhibitor in egg white. Science 127: 1178–1179.CrossRefGoogle Scholar
  121. Michels, M. J. M., and Kagei, R. F. 1983. Egg-yolk trypticase soy agar for the enumeration of heat-damaged spores of Clostridium sporogenes. J. Appl. Bacteriol. 55: 203–208.CrossRefGoogle Scholar
  122. Mitra, R. S. 1984. Protein synthesis in Escherichia coli during recovery from exposure to low levels of Cd2+. Appi. Environ. Microbiol. 47: 1012–1016.Google Scholar
  123. Mitra, R. S., and Bernstein, I. A. 1978. Single-strand breakage in DNA of Escherichia coli exposed to Cd2+.f Bacteriol. 133: 75–80.Google Scholar
  124. Montville, T. J. 1982. Metabiotic effect of Bacillus licheniformis on Clostridium botulinum: Implications for home-canned tomatoes. Appl. Environ. Microbiol. 44: 334–338.Google Scholar
  125. Montville, T. J., and Conway, L. K. 1982. Oxidation-reduction potentials of canned foods and their ability to support Clostridium botulinum toxigenesis. J. Food Sci. 47: 1879–1882.CrossRefGoogle Scholar
  126. Moon, N.J.; Beuchat, L. R.; Kinkaid, D. T.; and Hays, E. R. 1982. Evaluation of lactic acid bacteria for extending the shelf life of shrimp. J. Food Sci. 47: 897–900.CrossRefGoogle Scholar
  127. Morita, R. Y. 1975. Psychrophilic bacteria. Bacteriol. Rev. 39: 144–167.Google Scholar
  128. Morozumi, S. 1978. Isolation, purification, and antibiotic activity of o-methoxycinnamaldehyde from cinnamon. Appi. Environ. Microbiol. 36: 577–583.Google Scholar
  129. Mossel, D. A. A., and Ingram, M. 1955. The physiology of the microbial spoilage of foods. J. Appi. Bacteriol. 18: 232–268.CrossRefGoogle Scholar
  130. Mundt, J. O., and Norman, J. M. 1982. Metabiosis and pH of moldy fresh tomatoes. J. Food Prot. 45: 829–832.Google Scholar
  131. Nath, K. R., and Wagner, B. J. 1973. Stimulation of lactic acid bacteria by a Micrococcus isolate: evidence for multiple effects. Appi. Microbiol. 26: 49–55.Google Scholar
  132. Nelson, F. E. 1972. Plating medium pH as a factor in apparent survival of sublethally stressed yeasts. Appi. Microbiol. 24: 236–239.Google Scholar
  133. Nordbring-Hertz, B. 1983. Dialysis membrane technique for studying microbial interaction. Appi. Environ. Microbiol. 45: 290–293.Google Scholar
  134. Northolt, M. D. 1979. The influence of water activity on microorganisms in foods. Antonie van Leeuwenhoek 45: 159.CrossRefGoogle Scholar
  135. Northolt, M. D., and Heuvelman, C. J. 1982. The salt crystal liquefaction test-A simple method for testing the water activity of foods. J Food Prot. 45: 537–540.Google Scholar
  136. Nunes, R. V.; Urbicain, M. J.; and Rotstein, E. 1985. Improving accuracy and precision of water activity measurements with a water vapor pressure manometer. J. Food Sci. 50: 148–149.CrossRefGoogle Scholar
  137. Oliveria, J. S., and Parmelee, C. E. 1976. Rapid enumeration of psychrotrophic bacteria in raw and pasteurized milk. J. Milk Food Technol. 39: 269–272.Google Scholar
  138. Onderdonk, A. B.; Johnston, J.; Mayhew, J. W.; and Gorbach, S. L. 1976. Effect of dissolved oxygen and Eh on Bacteroides fragilis during continuous culture. Appi. Environ. Microbiol. 31: 168–172.Google Scholar
  139. Pellon, J. R. 1983. A note on the repair of the Escherichia coli nucleoid structure after heat shock. J Appi. Bacteriol. 54: 437–439.CrossRefGoogle Scholar
  140. Pitt, J. I., and Christian, J. H. B. 1968. Water relations of xerophilic fungi isolated from prunes. Appi. Microbiol. 16: 1853–1858.Google Scholar
  141. Price, R. J., and Lee, J. S. 1970. Inhibition of Pseudomonas species by hydrogen peroxide producing lactobacilli. J. Milk Food Technol. 33: 13–18.Google Scholar
  142. Rao, D. R., and Pulusani, S. R. 1981. Effect of cultural conditions and media on the antimicrobial activity of Streptococcus thermophilus. J. Food Sci. 46: 630–632.CrossRefGoogle Scholar
  143. Ray, B.; Jezeski, J. J.; and Busta, F. F. 1971a. Effect of rehydration on recovery, repair, and growth of injured freeze-dried Salmonella anatum. Appl. Microbiol. 22: 184–189.Google Scholar
  144. Ray, B.; Jezeski, J. J.; and Busta, F. F. 1971b. Repair of injury in freeze-dried Salmonella anatum. Appi. Microbiol. 22: 401–407.Google Scholar
  145. Reddy, M. S.; Vedamuthu, E. R.; Washam, C. J.; and Reinbold, G. W. 1971. Associative growth relationships in two strain mixtures of Streptococcus lactis and Streptococcus cremoris. J. Milk Food Technol. 34: 236–240.Google Scholar
  146. Reddy, N. S., and Ranganathan, B. 1983. Preliminary studies on antimicrobial activity of Streptococcus lactic subsp. diacetylactis. J. Food Prot. 46: 222–225.Google Scholar
  147. Reiter, B., and Härnuiv, G. 1984. Lactoperoxidase antibacterial system: natural occur- rence, biological functions and practical applications. J. Food Prot. 47: 724–732.Google Scholar
  148. Reiter, B.; Marshall, V. M. E.; Björck, L.; and Rosen, C. G. 1976. Nonspecific bactericidal activity of the lactoperoxidase-thiocyanate-hydrogen peroxide system of milk against Escherichia coli and some Gram-negative pathogens. Infec. Immunity 13: 800–807.Google Scholar
  149. Rhodes, M. B.; Bennett, N.; and Feeney, R. E. 1960. The trypsin and chymotrypsin inhibitors from avian egg whites. J. Biol. Chem. 235: 1686–1693.Google Scholar
  150. Rhodes, M. W.; Anderson, I. C.; and Kator, H. I. 1983. In situ development of sublethal stress in Escherichia coli: Effects on enumeration. Appi. Environ. Microbiol. 45: 1870–1876.Google Scholar
  151. Rolfe, R. D.; Hentges, D. J.; Campbell, B. J.; and Barrett, J. T. 1978. Factors related to the oxygen tolerance of anaerobic bacteria. Appl. Environ. Microbiol. 36: 306–313.Google Scholar
  152. Ross, E.; Bartlett, D. S.; and Hard, M. M. 1953. An application of oxidation-reduction potentials to frozen fruits treated with ascorbic acid and ascorbic-citric acid mixtures. Food Technol. 7: 153–156.Google Scholar
  153. Ross, G. D. 1981. The inhibition of growth of spoilage microorganisms in milk by Streptococcus lactis subsp. diacetylactis, Leuconostoc cremoris and L. dextranicum. Aust. J. Dairy Technol. 36: 147–152.Google Scholar
  154. Saleem, Z. M., and Al-Delaimy, K. S. 1982. Inhibition of Bacillus cereus by garlic extracts. J. Food Prot. 45: 1007–1009.Google Scholar
  155. Sapers, G. M.; Phillips, J. G.; and Divito, A. M. 1984. Correlation between pH and composition of foods comprising mixtures of tomatoes and low-acid ingredients.“ Food Sci. 49: 233–235, 238.Google Scholar
  156. Sato, M., and Takahashi, H. 1970. Cold shock of bacteria. IV. Involvement of DNA ligase reaction in recovery of Escherichia coli from cold shock.“. Gen. Appl. Microbiol. 16: 279–290.CrossRefGoogle Scholar
  157. Scannell, J. P.; Pruess, D. L.; Denny, T. C.; Sello, L. H.; Williams, T.; and Stempel, A. 1972. Antimetabolites produced by microorganisms. V.L-2-amino-4-methoxy-trans-3-butenoic acid. J. Antibiot. 25: 122–127.CrossRefGoogle Scholar
  158. Schappert, K. T., and Khachatourians, G. G. 1983. Effects of fusariotoxin T-2 on Saccharomyces cerevisiae and Saccharomyces carlsbergensis. Appl. Environ. Microbiol. 45: 862–867.Google Scholar
  159. Scott, V. N., and Bernard, D. T. 1983. Influence of temperature on the measurement of water activity of food and salt systems.“ Food Sci. 48: 552–554.CrossRefGoogle Scholar
  160. Scott, V. N., and Taylor, S. L. 1981. Effect of nisin on the outgrowth of Clostridium botulinum spores. J. Food Sci. 46: 117–120, 126.Google Scholar
  161. Sharma, A.; Padwal-Desai, S. R.; Tewari, G. M.; and Bandyopadhyay, C. 1981. Factors affecting antifungal activity of onion extractives against aflatoxin-producing fungi. J. Food Sci. 46: 741–744.CrossRefGoogle Scholar
  162. Shelef, L. A. 1983. Antimicrobial effects of spices. J Food Safety 6: 29–44.CrossRefGoogle Scholar
  163. Shelef, L. A.; Jyothi, E. K., and Bulgarelli, M. A. 1984. Growth of enteropathogenic and spoilage bacteria in sage-containing broth and foods.“. Food Sci. 49: 737–740, 809.Google Scholar
  164. Shindala, A.; Bungay, H. R.; Krieg, N. R.; and Culbert, K. 1965. Mixed-culture interactions. I. Commensalism of Proteus vulgaris with Saccharomyces cerevisiae in continuous culture. J. Bacteriol. 89: 693–696.Google Scholar
  165. Sinskey, T.J., and Silverman, G.J. 1970. Characterization of injury incurred by Escherichia coli upon freeze-drying. J. Bacteriol. 101: 429–437.Google Scholar
  166. Smith, J. L.; Buchanan, R. L; and Palumbo, S. A. 1983. Effect of food environment on staphylococcal enterotoxin synthesis: A review.“ Food Prot. 46: 545–555.Google Scholar
  167. Smith, L. D. 1975. Inhibition of Clostridium botulinum by strains of Clostridium perfringens isolated from soil. Appl. Microbiol. 30: 319–323.Google Scholar
  168. Smolka, L. R.; Nelson, E E.; and Kelley, L. M. 1974. Interaction of pH and NaC1 on enumeration of heat-stressed Staphylococcus aureus. Appl. Microbiol. 27: 443–447.Google Scholar
  169. Sorrells, K. M., and Speck, M. L. 1970. Inhibition of Salmonella gallinarum by culture filtrates of Leuconostoc citrovorum. J. Dairy Sci. 53: 239–241.CrossRefGoogle Scholar
  170. Sperber, W. H. 1983. Influence of water activity on foodborne bacteria-A review. J. Food Prot. 46: 142–150.Google Scholar
  171. Spik, G.; Cheron, A.; Montreuil, J; and Dolby, J. M. 1978. Bacteriostasis of a milk-sensitive strain of Escherichia coli by immunoglobulins and iron-binding proteins in association. Immunology 35: 663–671.Google Scholar
  172. Stamp, J. A.; Linscott, S.; Lomauro, C.; and Labuza, T. P. 1984. Measurement of water activity of salt solutions and foods by several electronic methods as compared to direct vapor pressure measurement. J. Food Sci. 49: 1139–1142.CrossRefGoogle Scholar
  173. Stokes, J. L. 1968. “Nature of Psychrophilic Microorganisms.” In Low Temperature Biology of Foodstuffs. J. Hawthorne, ed. Oxford, England: Pergamon Press.Google Scholar
  174. Subba, M. S.; Soumithri, T. C.; and Rao, R. S. 1967. Antimicrobial action of citrus oils. J. Food Sci. 32: 225–227.CrossRefGoogle Scholar
  175. Summerton, J.; Atkins, T.; and Bestwick, R. 1983. A rapid method for preparation of bacterial plasmids. Anal. Biochem. 133: 79–84.CrossRefGoogle Scholar
  176. Talon, R.; Labadie, J.; and Larpent, J. 1980. Characterization of the inhibitory power of Lactobacillus of meat origin. Zbl. Bakt., I. Abt. Orig. B. 170: 133–142.Google Scholar
  177. Tarrant, P. V., and Sherington, J. 1980. An investigation of ultimate pH in the muscles of commercial beef carcasses. Meat Sci. 4: 287–297.CrossRefGoogle Scholar
  178. Tautorus, T. E., and Townsley, P. M. 1983. Biological control of olive green mold in Agaricus bisporus cultivation. Appi. Environ. Microbiol. 45: 511–515.Google Scholar
  179. Teng, T. T., and Scow, C. C. 1981. A comparative study of methods for prediction of water activity of multicomponent aqueous solutions. J. Food Technol. 16: 409–419.CrossRefGoogle Scholar
  180. Ting, W., and Banwart, G. J. 1985. Enumeration of enterococci and aerobic mesophilic plate count in dried soup using three reconstitution methods. J. Food Prot. 48: 770–771.Google Scholar
  181. Tranter, H. S., and Board, R. G. 1984. The influence of incubation temperature and Ph on the antimicrobial properties of hen egg albumen. J. Appi. Bacterial. 56: 53–61.CrossRefGoogle Scholar
  182. Troller, J. A. 1971. Effect of water activity on enterotoxin B production and growth of Staphylococcus aureus. Appi. Microbial. 21: 435–439.Google Scholar
  183. Troller, J. A. 1983a. Methods to measure water activity. J. Food Prot. 46: 129–134.Google Scholar
  184. Troller, J. A. 1983b. Water activity measurements with a capacitance manometer. J. Food Sci. 48: 739–741.CrossRefGoogle Scholar
  185. Tung, M. A.; Garland, M. R.; and Gill, P. K. 1979. A scanning electron microscope study of bacterial invasion in hen’s egg shell. J Inst. Can. Sci. Technol. Aliment. 12: 16–22.Google Scholar
  186. Umezawa, H. 1982. Low-molecular-weight enzyme inhibitors of microbial origin. Annu. Rev. Microbiol. 36: 75–99.CrossRefGoogle Scholar
  187. Utkhede, R. S., and Rahe, J. E. 1983. Effect of Bacillus subtilis on growth and protection of onion against white rot. Phytopathol. Z. 106: 199–203.CrossRefGoogle Scholar
  188. Vandenbergh, P. A.; Gonzalez, C. F.; Wright, A. M.; and Kunka, B. S. 1983. Iron-chelating compounds produced by soil pseudomonads: Correlation with fungal growth inhibition. Appi. Environ. Microbiol. 46: 128–132.Google Scholar
  189. Vidaver, A. K. 1983. Bacteriocins: The lure and the reality. Plant Dis. 67: 471–475.CrossRefGoogle Scholar
  190. Wadowsky, R. M., and Yee, R. B. 1983. Satellite growth of Legionella pneumophila with an environmental isolate of Flavobacterium breve. Appi. Environ. Microbiol. 46: 1447–1449.Google Scholar
  191. Walden, W. C., and Hentges, D. J. 1975. Differential effects of oxygen and oxidationreduction potential on the multiplication of three species of anaerobic intestinal bacteria. Appi. Microbiol. 30: 781–785.Google Scholar
  192. Walsh, S. M., and Bissonnette, G. K. 1983. Chlorine-induced damage to surface adhesins during sublethal injury of enterotoxigenic Escherichia coli. Appi. Environ. Microbiol. 45; 1060–1065.Google Scholar
  193. Warriss, P. D. 1982. The relationship between pH45 and drip in pig muscle. J. Food Technol. 17: 573–578.CrossRefGoogle Scholar
  194. Wedral, E. M.; Vadehra, D. V.; and Baker, R. C. 1971. Mechanism of bacterial penetration through theeggs of Callus gallus. 2. Effect of penetration and growth on permeabilityof inner shell membrane. J. Food Sci. 36; 520–522.CrossRefGoogle Scholar
  195. Wickner, R. B. 1983. Killer systems in Saccharomyces cerevisiae: Three distinct modes of exclusion of M2 double-stranded RNA by three species of double-stranded RNA, MI, L-A-E, and L-A-HN. Mol. Cell. Biol. 3: 654–661.Google Scholar
  196. Wiebe, H. H.; Kidambi, R. N.; Richardson, G. H.; and Ernstrom, C. A. 1981. A rapid psychrometric procedure for water activity measurement of foods in the intermediate moisture range. J Food Prot. 44: 892–895.Google Scholar
  197. Yatvin, M. B.; Wood, P. G.; and Brown, S. M. 1972. “Repair” of plasma membrane injury and DNA single strand breaks in 7-irradiated Escherichia coli B/r and Bochim. Biophys. Acta 287: 390–403.Google Scholar
  198. Yotis, W. W., and Baman, S. I. 1969. An evaluation of diethylstilbestrol as an inhibitor of the growth of staphylococci. Yale I. Biol. Med. 41: 311–322.Google Scholar
  199. Yotis, W. W., and Haan, J. N. 1978. Cytokinesis of Candida albicans by diethylstilbestrol. J. Appl. Bacteriol. 44: 225–232.CrossRefGoogle Scholar
  200. Young, T. W. 1981. The genetic manipulation of killer character into brewing yeast. J. Inst. Brew. 87: 292–295.Google Scholar
  201. Zaika, L. L.,and Kissinger, J. C. 1979. Effects of some spices on acid production by starter cultures. J. Food Prot. 42: 572–576.Google Scholar
  202. Zaika, L. L.,and Kissinger, J. C. 1981. Inhibitory and stimulatory effects of oregano on Lactobacillus plantarum and Pediococcus cerevisiae. J. Food Sci. 46: 1205–1210.CrossRefGoogle Scholar
  203. Zaika, L. L.; Kissinger, J. C.; and Wasserman, A. E. 1983. Inhibition of lactic acid bacteria by herbs. J Food Sci. 48: 1455–1459.CrossRefGoogle Scholar

Copyright information

© Van Nostrand Reinhold 1989

Authors and Affiliations

  • George J. Banwart
    • 1
  1. 1.Department of MicrobiologyThe Ohio State UniversityUSA

Personalised recommendations