Estimating the Number of Microorganisms

  • George J. Banwart


An important aspect of food microbiology is the examination of food or other materials for microorganisms.


Plate Count Much Probable Number Ground Beef Standard Plate Count Aerobic Plate Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackland, M.R.; Manvell, P.M.; and Bean, P.G. 1984 A rapid electrical method to detect microbial growth automatically. Biotechnol. Letters. 6: 137–142.Google Scholar
  2. Anderson, G. E., and Whitehead, J. A. 1974. The validity of the methylene blue reduction test in the grading of ice cream.J. Appi. Bacteriol. 37: 487–492.Google Scholar
  3. Anderson, M. E.; Huff, H. E.; Naumann, H. D.; Marshall, R. T.; Damare, J.; Johnston, R.; and Pratt, M. 1987. Evaluation of swab and tissue excision methods for recovering microorganisms from washed and sanitized beef carcasses.J. Food Prot. 50: 741–743.Google Scholar
  4. Anon. 1974. assay from bacteriuria. Lab Manage. 12(5): 35–36, 42.Google Scholar
  5. AOAC. 1981. Microbiological methods. J. Assoc. Offic. Anal. Chem. 64: 528–530.Google Scholar
  6. AOAC. 1983. Enumeration of coliforms in selected foods. Hydrophobic grid membrane filter method, official first action.J. Assoc. Offic. Anal. Chem. 66: 547–548.Google Scholar
  7. AOAC. 1985. Official Methods of Analysis of the Association of Official Analytical Chemists. 14th ed. W. Horwitz, ed. Washington, D.C.: Association of Official Analytical Chemists.Google Scholar
  8. APHA. 1970. Recommended Procedures for the Examination of Sea Water and Shellfish. 4th ed. Washington, D.C.: American Public Health Association.Google Scholar
  9. APHA. 1978. Standard Methods for the Examination of Dairy Products. 14th ed. New York: American Public Health Association.Google Scholar
  10. APHA. 1984. Compendium of Methods for the Microbiological Examination of Foods. 2d ed. M. L. Speck, editor. Washington, D.C.: American Public Health Association.Google Scholar
  11. Bailey, C. A., and May, M. E. 1979. Evaluation of microbiological test kits for hydrocarbon fuel systems. Appi. Environ. Microbiol. 37: 871–877.Google Scholar
  12. Bailey, J. S., and Cox, N. A. 1987. Evaluation of the petrifilm SM and VRB dry media nculture plates for determining microbial quality of poultry.J. Food Prot. 50: 643–644.Google Scholar
  13. Barrow, P. A. 1983. A note on a method to aid sampling populations for characteristics. J. Appi. Bacteriol. 54: 311–312.Google Scholar
  14. Biltcliffe, D. O.; Shrouder, J. P.; Steiner, E. H.; and Wood, R. 1983. An assessment of acceptance sampling plans as applied to foodstuffs.J. Food Technol. 18: 143–151.Google Scholar
  15. Blankenagel, G. 1976. An examination of methods to assess post-pasteurization contamination.J. Milk Food Technol. 39: 301–304.Google Scholar
  16. Bordner, R. H. 1981. Microbiology: Methodology and quality assurance.J. Water Pollut. Control Fed. 53: 1098–1107.Google Scholar
  17. Bourgeois, C. M.; Le Parc, O.; Abgrall, B.; and Cleret, J. 1984. Membrane filtration of milk for counting spores of Clostridium tyrobutyricum. J. Dairy Sci. 67: 2493–2499.Google Scholar
  18. Brickey, P. M., Jr.; Alioto, P.; Brodsky, M. H.; Lake, D. E.; Rayman, K.; Twedt, R. M.; Mastro-rocco, D. A., Jr.; McClure, F. D.; and Young, R. E. 1986. Recommendations for official methods.J. Assoc. Offic. Anal. Chem. 69: 302–303.Google Scholar
  19. Carlsson, J. 1973. Simplified gas chromatographic procedure for identification of bacterial metabolic products. Appi. Microbiol. 25: 287–289.Google Scholar
  20. Cobb, B. F.; Vanderzant, C.; Thompson, C. A., Jr.; and Custer, C. S. 1973. Chemical characteristics, bacterial counts, and potential shelf-life of shrimp from various locations on the northwestern Gulf of Mexico.J. Milk Food Technol. 36: 463–468.Google Scholar
  21. Collins, C. H., and Lyne, P. M. 1976. Microbiological Methods. 4th ed. London: Butterworth and Co.Google Scholar
  22. Conn, H. J. 1961. Biological Stains. 7th ed. Baltimore: Williams and Wilkins Co.Google Scholar
  23. Cook, D. W., and Pabst, G. S., Jr. 1984. Recommended modification of dilution procedure used for bacteriological examination of shellfish. j Assoc. Offic. Anal. Chem. 67: 197–198.Google Scholar
  24. Cowell, N. D., and Morisetti, M. D. 1969. Microbiological techniques-Some statistical aspects.J. Sci. Food Agr. 20: 573–579.Google Scholar
  25. Cowlen, M. S., and Marshall, R. T. 1982. Soaking of mustard seeds to release microorganisms in making plate counts.J. Food Prot. 45: 340, 344.Google Scholar
  26. Cranston, P. M. 1983. Alginic acid derivatives as a solidifying agent for microbiological nutrient suspension. Food Technol. Aust. 35: 134–135.Google Scholar
  27. Deibel, K. E., and Banwart, G. J. 1982. Comparison of the stomacher with other systems for breaking clumps and chains in the enumeration of bacteria.J. Food Prot. 45: 898–902.Google Scholar
  28. Dewhurst, E.; Rawson, D. M.; and Steele, G. C. 1986. The use of a model system to compare the efficiency of ultrasound and agitation in the recovery of Bacillus subtilis spores from polymer surfaces.J. Appi. Bacteriol. 61: 357–363.Google Scholar
  29. Dickens, J. A.; Cox, N. A.; and Bailey, J. S. 1986. Evaluation of a mechanical shaker for microbiological rinse sampling of turkey carcasses. Poultry Sci. 65: 1100–1102.Google Scholar
  30. Dijkman, A. J.; Breunissen, H.; van der Laar, J. M. J.; Perriens, J.; Verberne, H.; and Jaartsveld, F. H. J. 1979. Entrapped air as a cause of erroneous milk cell counts (Coulter counter). Neth. Milli Dairy J. 33: 155–157.Google Scholar
  31. Dodds, K. L.; Holley, R. A.; and Kempton, A. G. 1983. Evaluation of the catalase and Limulus amoebocyte lysate tests for rapid determination of the microbial quality of vacuum-packed cooked turkey. Can. Inst. Food Sci. Technol. J. 16: 167–172.Google Scholar
  32. Emswiler, B. S.; Kotula, A. W.; Chesnut, C. M.; and Young, E. P. 1976. Dye reduction method for estimating bacterial counts in ground beef. Appi. Environ. Microbiol. 31: 618–620.Google Scholar
  33. Entis, P. 1986. Hydrophobic grid membrane filter method for aerobic plate count in foods: Collaborative study.J. Assoc. Offic. Anal. Chem. 69: 671–676.Google Scholar
  34. Entis, P.; Brodsky, M. H.; and Sharpe, A. N. 1982. Effect of pre-filtration and enzyme treatment on membrane filtration of foods. J. Food Prot. 45: 8–11.Google Scholar
  35. FDA. 1978. Bacteriological Analytical Manual for Foods. 5th ed. Washington, D.C.: Food and Drug Administration.Google Scholar
  36. Feldman, J. 1982. Analytical methods for microbiology in the next decade.J. Assoc. Offic. Anal. Chem. 65: 535–541.Google Scholar
  37. Fields, M. L.; Richmond, B. S.; and Baldwin, R. E. 1968. Food quality as determined by metabolic by-products of microorganisms. Ad. Food Res. 16: 161–229.Google Scholar
  38. Firstenberg-Eden, R. 1983. Rapid estimation of the number of microorganisms in raw meat by impedance measurement. Food Technol. 37 (1): 64–70.Google Scholar
  39. Firstenberg-Eden, R. 1984. Collaborative study of the impedance method for examining raw milk samples.J. Food Prot. 47: 707–712.Google Scholar
  40. Firstenberg-Eden, R., andTricarico, M. K. 1983. Impedimetric determination of total, mesophilic and psychrotrophic counts in raw milk.J. Food Sci. 48: 1750–1754.Google Scholar
  41. Firstenberg-Eden, R., and Zindulis, J. 1984. Electrochemical changes in media due to microbial growth.J. Microbiol. Methods. 2: 103–115.Google Scholar
  42. Gilchrist, J. E.; Campbell, J. E.; Donnelly, C. B.; Peeler, J. T.; and Delaney, J. M. 1973. Spiral plate method for bacterial determination. Appi. Microbiol. 25: 244–252.Google Scholar
  43. Gilchrist, J. E.; Donnelly, C. B.; Peeler, J. T.; and Campbell, J. E. 1977. Collaborative study comparing the spiral plate and aerobic plate count methods.J. Assoc. Offic. Anal. Chem. 60: 807–812.Google Scholar
  44. Ginn, R. E.; Packard, V. S.; and Fox, T. L. 1984. Evaluation of the 3M dry medium culture plate (PetrifilmT“ SM) method for determining numbers of bacteria in raw milk. J. Food Prot. 47: 753–755, 759.Google Scholar
  45. Gnan, S., and Luedecke, L. O. 1982. Impedance measurements in raw milk as an alternative to the standard plate count.J. Food Prot. 45: 4–7.Google Scholar
  46. Goldschmidt, M. C., and Fung, D. Y. C. 1978. New methods for microbiological analysis of food.J. Food Prot. 41: 201–219.Google Scholar
  47. Goldschmidt, M. C., and Fung, D. Y. C. 1979. Automated instrumentation for microbiological analysis. Food Technol. 33 (3): 63–70.Google Scholar
  48. Goulet, J.; Lévesque, G.; Moreau, J. R.; and Roth, L. A. 1983. A new simple method for microbiological sampling of meat surfaces. Can. J. Microbiol. 29: 631–636.Google Scholar
  49. Gray, W. M., and Johnson, M. G. 1976. Characteristics of bacteria isolated by the anaerobic roll-tube method from cheeses and ground beef. Appt. Environ. Microbiol. 31: 268–273.Google Scholar
  50. Greenwood, M. H.; Coetzee, E. F. C.; Ford, B. M.; Gill, P.; Hooper, W. L.; Matthews, S. C. W.; Patrick, S.; Pether, J. V. S.; and Scott, R J. D. 1984 The microbiology of selected retail food products with an evaluation of viable counting methods. J. Hyg. Camb. 92: 67–77.Google Scholar
  51. Hall, R. C. 1971. Simple test to predict commercial sterility of heated food products. J. Milk Food Technol. 34: 196–197.Google Scholar
  52. Hansen, K.; Mikkelsen, T.; and Moller-Madsen, A. 1982. Use of the Limulus test to determine the hygienic status of milk products as characterized by levels of gram-negative bacterial lipopolysaccharide present. J Dairy Res. 49: 323–328.Google Scholar
  53. Hardy, D.; Kraeger, S. J.; Dufour, S. W.; and Cady, P. 1977. Rapid detection of microbial contamination in frozen vegetables by automated impedance measurements. Appi. Environ. Microbiol. 34: 14–17.Google Scholar
  54. Harrewijn, G. A. 1975. Preparation of sample material for analysis. Antonie von Leeuwenhoek 41: 381–382.Google Scholar
  55. Hartman, P. A. 1968. “Miniature Microbiological Methods.” Adv. Appl. Microbiol., Supplement 1. New York: Academic Press.Google Scholar
  56. Hatcher, W. S.; Di Benedetto, S.; Taylor, L. E.; and Murdock, D. I. 1977. Radiometric analysis of frozen concentrated orange juice for total viable microorganisms. J. Food Sci. 42: 636–639.Google Scholar
  57. Hoben, H.J., and Somasegaran, P. 1982. Comparison of the pour, spread, and drop plate methods for enumeration of Rhizobium spp. in inoculants made from presterilized peat. Appt. Environ. Microbial. 44: 1246–1247.Google Scholar
  58. Hudson, W. R.; Roberts, T. A.; and Whelehan, O. R. 1983. A minimal apparatus method for counting bacteria: Comparison with reference method in surveying beef carcasses at three commercial abattoirs. J Hyg. Camb. 91: 459–466.Google Scholar
  59. Huhtanen, C. N. 1968. Incubation temperatures and raw milk bacterial counts. J Milk Food Technol. 31: 154–160.Google Scholar
  60. Hunter, A. C., and McCorquodale, R. M. 1983. Evaluation of the direct epifluorescent filter technique for assessing the hygienic condition of milking equipment. J. Dairy Res. 50: 9–16.Google Scholar
  61. ICMSF. 1974. Microorganisms in Foods 2. Sampling for Microbiological Analysis: Principles and Specific Applications. University of Toronto Press, Canada: International Commission on Microbiological Specifications for Foods.Google Scholar
  62. Jarvis, B. 1982. Rapid methods in food microbiology. A practical approach. Food Technol. Aust. 34: 518–523.Google Scholar
  63. Jarvis, B.; Lach, V. H.; and Wood, J. M. 1977. Evaluation of the spiral plate maker for the enumeration of micro-organisms in foods. J. Appl. Bacteriol. 43: 149–157.Google Scholar
  64. Jay, J. M. 1981. Rapid estimation of microbial numbers in fresh ground beef by use of the Limulus test. J. Food Prot. 44: 275–278.Google Scholar
  65. Jones, D. T. 1979. The sampling of imported foods. J. Assoc. Publ. Analysts 17: 3–14.Google Scholar
  66. Kang, K. S.; Veeder, G. T.; Mirrasoul, P. J.; Kaneko, T.; and Cottrell, I. W. 1982. Agar-like polysaccharide produced by a Pseudomonas species: Production and basic properties. Appt. Environ. Microbiol. 43: 1086–1091.Google Scholar
  67. Kilsby, D. C., and Pugh, M. E. 1981. The relevance of the distribution of micro-organisms within batches of food to the control of microbiological hazards from foods. J. Appl. Bacteriol. 51: 345–354.Google Scholar
  68. King, J. S., and Mabbitt, L. A. 1984. Factors affecting the volume of milk delivered by a standard loop in the plate loop method for bacterial count.]. Dairy Res. 51: 317–324.Google Scholar
  69. Klein, H. R. 1976. Microbiology on Mars? ASM News 42: 207–214.Google Scholar
  70. Kogure, K., and Koike, I. 1987. Particle counter determination of bacterial biomass in seawater. Appi. Environ. Microbiol. 53: 274–277.Google Scholar
  71. Kramer, J. 1977. A rapid microdilution technique for counting viable bacteria in food. Lab. Practice 26: 675–676.Google Scholar
  72. Kramer, J. M.; Kendall, M.; and Gilbert, R. J. 1979. Evaluation of the spiral plate and laser colony counting techniques for the enumeration of bacteria in foods. Eur.J. Appi. Microbiol. Biotechnol. 6: 289–299.Google Scholar
  73. Kümmerlin, R. 1982. Technical note: Resazurin test for microbiological control of deep-frozen shrimps. J. Food Technol. 17: 513–515.Google Scholar
  74. Lampi, R. A.; Mikelson, D. A.; Rowley, D. B.; Previte, J. J.; and Wells, R. E. 1974. Radiometry and microcalorimetry-Techniques for the rapid detection of foodborne microorganisms. Food Technol. 28(10): 52, 54, 56, 58.Google Scholar
  75. Lee, J. Y., and Fung, D. Y. C. 1986. Methods for sampling meat surfaces. J. Environ. Health 48: 200–205.Google Scholar
  76. Lillard, H. S., and Thomson, J. E. 1983. Comparison of sampling methods for Escherichia coli and total aerobic counts on broiler carcasses. J. Food Prot. 46: 781–782.Google Scholar
  77. Lin, C. C., and Casida, L. E., Jr. 1984. GELRITE as a gelling agent in media for the growth of thermophilic microorganisms. App. Environ. Microbiol. 47: 427–429.Google Scholar
  78. Lundholm, I. M. 1982. Comparison of methods for quantitative determinations of airborne bacteria and evaluation of total viable counts. App. Environ. Microbiol. 44: 179–183.Google Scholar
  79. McElroy, W. D., and DeLuca, M. A. 1983. Firefly and bacterial luminescence: Basic science and applications. J. Appt. Biochem. 5: 197–209.Google Scholar
  80. McFeters, G. A.; Cameron, S. C.; and Le Chevallier, M. W. 1982. Influence of diluents, media, and membrane filters on detection of injured waterborne coliform bacteria. Appt. Environ. Microbiol. 43: 97–103.Google Scholar
  81. Macher, J. M., and First, M. W. 1983. Reuter centrifugal air sampler: measurement of effective airflow rate and collection efficiency. Appt. Environ. Microbiol. 45: 1960–1962.Google Scholar
  82. Mafart, P.; Bourgeois, C; Duteurtre, B.; and Moll, M. 1978. Use of [“C] lysine to detect microbial contamination in liquid foods. Appt. Environ. Microbiol. 35: 1211–1212.Google Scholar
  83. Martin, P. G. 1979. Codex alimentarius concepts of sampling. J Assoc. Publ. Analysts 17: 21–27.Google Scholar
  84. Martins, S. B.; Hodapp, S.; Dufour, S. W.; and Kraeger, S. J. 1982. Evaluation of a rapid impedimetric method for determining the keeping quality of milk. J Food Prot. 45: 1221–1226.Google Scholar
  85. Martins, S. B., and Selby, M. J. 1980. Evaluation of a rapid method for the quantitative estimation of coliforms in meat by impedimetric procedures. Appt. Environ. Microbiol. 39: 518–524.Google Scholar
  86. Montagna, P. A. 1982. Sampling design and enumeration statistics for bacteria extracted from marine sediments. Appt. Environ. Microbiol. 43: 1366–1372.Google Scholar
  87. Morgan, I. R., Krautil, E; and Craven, J. A. 1985. A comparison of swab and maceration methods for bacterial sampling of pig carcasses. J. Hyg. Camb. 95: 383–390.Google Scholar
  88. Newsom, S. W. B. 1978. A review of automation and rapid methods in microbiology. Med. Lab. Sci. 34: 215–222.Google Scholar
  89. Nortje, G. L.; Swanepoel, E.; Naude, R. T.; Holzapfel, W. H.; and Steyn, P. L. 1982. Evaluation of three carcass surface microbial sampling techniques. J. Food Prot. 45: 1016–1017, 1021.Google Scholar
  90. O’Connor, E. 1984. Rapid test methods for assessing microbiological quality of milk. Aust. J. Dairy Technol. 39 (6): 61–64.Google Scholar
  91. Olson, J. C., Jr. 1975. Development and present status of FDA Salmonella sampling and testing plans. J. Milk Food Technol. 38: 369–371.Google Scholar
  92. O’Toole, D. K. 1974. A modification of the “bacto-strip” technique for counting bacteria. Aust. J. Dairy Technol. 29: 117.Google Scholar
  93. O’Toole, D. K.. 1983a. A toluidine blue-membrane filter method for the quantitative staining of bacteria. Stain Technol. 58: 291–298.Google Scholar
  94. O’Toole, D. K.. 1983b. Methods for the direct and indirect assessment of the bacterial content of milk. J. Appi. Bacteriol. 55: 187–201.Google Scholar
  95. O’Toole, D. K.. 1984. Application to the dairy industry of the toluidine blue-membrane filter method for estimating bacterial concentration-The growth of Streptococcus cremoris MLI in reconstituted skim milk, whole milk and cream. Aust. J. Dairy Technol. 39 (3): 17–22.Google Scholar
  96. Pettipher, G. L. 1986. Review: The direct epifluorescent filter technique. J Food Technol. 21: 535–546.Google Scholar
  97. Pettipher, G. L.. 1987. Detection of low numbers of osmophilic yeasts in creme fondant within 25 h using a pre-incubated DEFT count. Lett. Appl. Microbiol. 4: 95–98.Google Scholar
  98. Picciolo, G. L.; Chappell, E. W.; Deming, J. W.; Thomas, R. R.; Nibley, D. A.; and Okrend, H. 1981. Firefly Luciferase ATP Assay Development for Monitoring Bacterial Concentrations in Water Supplies. Project Summary. Cincinnati, Ohio: Environmental Protection Agency.Google Scholar
  99. Pike, E. B.; Carrington, E. G.; and Ashburner, P. A. 1972. An evaluation of procedures for enumerating bacteria in activated sludge. J. Appl. Bacteriol. 35: 309–321.Google Scholar
  100. Pizzo, P. A.; Purvis, D. S.; and Waters, C. 1982. Microbiological evaluation of food items. J. Amer. Dietet. Assoc. 81: 272–279.Google Scholar
  101. Placentia, A. M.; Peeler, J. T.; Oxborrow, G. S.; and Danielson, J. W. 1982. Comparison of bacterial recovery by Reuter centrifugal air sampler and slit-to-agar sampler. Appl. Environ. Microbiol. 44: 512–513.Google Scholar
  102. Postgate, J. R. 1969. “Viable Counts and Viability.” In Methods in Microbiology. Vol. 1. J. R. Norris and D. W. Ribbons, eds. New York: Academic Press.Google Scholar
  103. Purvis, U.; Sharpe, A. N.; Bergener, D. M.; Lachapelle, G.; Milling, M.; and Spiring, F. 1987. Comparison of bacterial counts obtained from naturally contaminated foods by means of stomacher and blender. Can. J Microbiol. 33: 52–56.Google Scholar
  104. QALL. 1981. Proceedings of the Iso-Grid“ Hydrophobic Grid Membrane Filter System. Presented at the Third International Seminar on Rapid Methods and Automation in Microbiology. May 27, 1981. Washington, D.C. Toronto, Canada: QA Laboratories Limited.Google Scholar
  105. Qvist, S. H., and Jakobsen, M. 1985. Application of the direct epifluorescent filter technique as a rapid method in microbiological quality assurance in the meat industry. Int. J. Food Microbiol. 2: 139–144.Google Scholar
  106. Rao, V. N. M., and Koehler, P. E. 1979. Analysis of some sampling distributions for quality control of foods. J. Food Sci. 44: 977–981.Google Scholar
  107. Richard, J. 1980. Observations on the value of a swab technique for determining the bacteriological state of milking equipment surfaces. J Appi. Bacteriol. 49: 19–27.Google Scholar
  108. Roberts, T. A.; MacFie, H. J. H.; and Hudson, W. R. 1980. The effect of incubation temperature and site of sampling on assessment of the numbers of bacteria on red meat carcasses at commercial abattoirs. J. Hyg. Comb. 85: 371–380.Google Scholar
  109. Rodrigues, U. M., and Kroll, R. G. 1985. The direct epifluorescent filter technique (DEFT): Increased selectivity, sensitivity and rapidity.J. Appi. Bacteriol. 59: 493–499. .Google Scholar
  110. Rodrigues, U. M., and Kroll, R. G. 1986. Use of the direct epifluorescent filter technique for the enumeration of yeasts. J. Appl. Bacteriol. 61: 139–144.Google Scholar
  111. Rowley, D. B.; Previte, J. J.; and Srinivasa, H. P. 1978. A radiometric method for rapid screening of cooked foods for microbial acceptability.J. Food Sci. 43: 1720–1722.Google Scholar
  112. Rowley, D. B.; Vandemark, P.; Johnson, D.; and Shattuck, E. 1979. Resuscitation of stressed fecal coliforms and their subsequent detection by radiometric and impedance techniques.J. Food Prot. 42: 335–341.Google Scholar
  113. Sanders, D. H., and Parkes, M. R. 1970. Infrared estimation of microbial population on broiler chicken carcasses during refrigerated storage. Poultry Sci. 49: 173–178.Google Scholar
  114. Schoon, D. J.; Drake, J. F.; Fredrickson, A. G.; and Tsuchiya, H. M. 1970. Automated counting of microbial colonies. Appi. Microbiol. 20: 815–820.Google Scholar
  115. Schutz, H. W. 1984. How to design a statistical sampling plan. Food Technol. 38 (9): 47–50.Google Scholar
  116. Scott, E.; Bloomfield, S. F.; and Barlow, C. G. 1984. A comparison of contact plate and calcium alginate swab techniques for quantitative assessment of bacteriological contamination of environmental surfaces.J. Appi. Bacteriol. 56: 317–320.Google Scholar
  117. Seiter, J. A., and Jay, J. M. 1980. Comparison of direct serial dilution and most-probablenumber methods for determining endotoxins in meats by the Limulus amoebocyte lysate test. Appl. Environ. Microbiol. 40: 177–178.Google Scholar
  118. Senyk, G. E; Kozlowski, S. M.; Noar, P. A.; Shipe, W. F.; and Sandler, D. K. 1987. Comparison of dry culture medium and conventional plating techniques for enumeration of bacteria in pasteurized fluid milk.J. Dairy Sci. 70: 1152–1158.Google Scholar
  119. Sharpe, A. N., and Jackson, A. K. 1972. Stomaching: A new concept in bacteriological sample preparation. Appt. Microbiol. 24: 175–178.Google Scholar
  120. Sharpe, A. N., and Kilsby, D. C. 1971. A rapid, inexpensive bacterial count technique using agar droplets.J.. Appt. Bacteriol. 34: 435–440.Google Scholar
  121. Shaw, B. G.; Harding, C. D.; Hudson, W. H.; and Farr, L. 1987. Rapid estimation of microbial numbers on meat and poultry by the direct epifluorescent filter technique. J. Food Prot. 50: 652–657, 664.Google Scholar
  122. Shelef, L. A. 1974. Hydration and pH of microbially spoiling beef.J. Appt. Bacteriol. 37: 531–536.Google Scholar
  123. Shelef, L. A., and Jay, J. M. 1970. Use of a titrimetric method to assess the bacterial spoilage of fresh beef. Appt. Microbiol. 19: 902–905.Google Scholar
  124. Shungu, D.; Valiant, M.; Tutlane, V; Weinberg, E.; Weissberger, B.; Koupal, L.; Gadebusch, H.; and Stapley, E. 1983. GELRITE as an agar substitute in bacteriological media. Appt. Environ. Microbiol. 46: 840–845.Google Scholar
  125. Simmonds, P. G. 1970. Whole microorganisms studied by pyrolysis-gas chromatography-mass spectrometry: Significance for extraterrestrial life detection experiments. Appi. Microbiol. 20: 567–572.Google Scholar
  126. Smith, L. B.; Fox, T. L.; and Busta, F. F. 1985. Comparison of a dry medium culture plate (Petrifilm SM plates) method to the aerobic plate count method for enumeration of mesophilic aerobic colony-forming units in fresh ground beef. J. Food Prot. 48: 1044–1045.Google Scholar
  127. Sorrells, K. M. 1981. Rapid detection of bacterial content in cereal grain products by automated impedance measurements. J. Food Prot. 44: 832–834.Google Scholar
  128. Southern, P. M.,Jr. 1979. New developments in automation and rapid methods in microbiology. Food Technol. 33(3): 54–56, 62.Google Scholar
  129. Speers, J. G. S.; Lewis, S. J.; and Gilmour, A. 1984. Bacteriological sampling of glass, rubber and stainless steel pipe sections.J. Dairy Res. 51. 547–555.Google Scholar
  130. Stannard, C.J., and Wood, J. M. 1983. ‘Ile rapid estimation of microbial contamination of raw meat by measurement of adenosine triphosphate (ATP) J. Appt. Bacteriol. 55: -129–438.Google Scholar
  131. Starusckiewici, W. F., Jr., and Bond, J. F. 1978. Multiple internal standard technique for the gas-liquid chromatographic determination of indole in shrimp.J. Assoc. 011ie. Anal. Cheat. 61: 136–138.Google Scholar
  132. Multisan, J. D., Jr.; Ellis, P.C.; Lee, R. G.; Combs, W. S., Jr.; and Watson, S. W. 1983. Comparison of the 1.01talu.5 amoebocyte lysate test with plate counts and chemical analyses for assessment of the quality of lean fish. Appt. Environ. Microbial. 45: 720–722.Google Scholar
  133. Swientek, R.L. 1981. Quantitative microbial test kits offer speedJ.simplicityJ.less cost compared to conventional methods. Food Process. 42 (5): 208–210.Google Scholar
  134. Swientek, R.L. 1983. Microbial strip analysis systems reveal colony counts in 24–48 hr. Food Process. 44 (2): 72–73.Google Scholar
  135. Sykora, J. L.; Keleti, G.; Roche, R.; Volk, D. R.; Kay, G. P.; Burgess, R. A.; and Shapiro, M. A. 1980. Endotoxins, algae and Limulus amoebocyte lysate test in drinking water. Water Res. 14: 829–839.Google Scholar
  136. Tansey, M. R. 1973. Use of butane lighter for sterilization of soil sampling instruments. Mycologia 65: 215–216.Google Scholar
  137. Thomas, C. J., and McMeekin, T. A. 1980. A note on scanning electron microscopic assessment of stomacher action on chicken skin. J App. Bacteriol. 49: 339–344.Google Scholar
  138. Thore, A.; Anséhn, S.; Lundin, A.; and Bergman, S. 1975. Detection of bacteriuria by luciferase assay of adenosine triphosphate. J. Clin. Microbiol. 1: 1–8.Google Scholar
  139. Thrasher, S., and Richardson, G. H. 1980. Comparative study of the stomacher and the Waring blender for homogenization of high-fat dairy foods.J. Food. Prot. 43: 763–764.Google Scholar
  140. Threlkeld, C. H. 1982. Detection of microbial contamination utilizing an infrared CO2 analyzer. J. Food Sci. 47: 1222–1225.Google Scholar
  141. Tilton, R. C., and Ryan, R. W. 1978. Evaluation of an automated agar plate streaker. J. Clin. Microbiol. 7: 298–304.Google Scholar
  142. Tomasiewicz, D. M.; Hotchkiss, D. K.; Reinbold, G. W.; Read, R. B., Jr.; and Hartman, P. A. 1980. The most suitable number of colonies on plates for counting. J. Food Prot. 43: 282–286.Google Scholar
  143. Trotman, R. E., and Byrne, K. C. 1975. The automatic preparation of bacterial culture plates.J. Appi. Bacteriol. 38: 61–62.Google Scholar
  144. Tsuji, K., and Bussey, D. M. 1986. Automation of microbial enumeration: development of a disposable hydrophobic grid-membrane filter unit. Appi. Environ. Microbiol. 52: 857–860.Google Scholar
  145. Waters, J. R. 1972. Sensitivity of the “CO2 radiometric method for bacterial detection. App. Microbiol. 23: 198–199.Google Scholar
  146. Watrous, G. H., Jr.; Barnard, S. E.; and Coleman, W. W. 1971. A survey of the actual and potential bacterial keeping quality of pasteurized milk from 50 Pennsylvania dairy plants. J. Milk Food Technol. 34: 145–149.Google Scholar
  147. Webb, N. B.; Thomas, F. B.; Busta, F. F.; and Kerr, L. S. 1972. Evaluation of scallop meat quality by the resazurin reduction technique. J. Milk Food Technol. 35: 664–668.Google Scholar
  148. Weihe, J. L.; Seibt, S. L.; Hatcher, W. S.,Jr. 1984. Estimation of microbial populations in frozen concentrated orange juice using automated impedance measurements. J. Food Sci. 49: 243–245.Google Scholar

Copyright information

© Van Nostrand Reinhold 1989

Authors and Affiliations

  • George J. Banwart
    • 1
  1. 1.Department of MicrobiologyThe Ohio State UniversityUSA

Personalised recommendations