Control of Microorganisms by Destruction

  • George J. Banwart


The death of some microbial cells occurs during refrigeration, freezing, drying, or chemical treatment. However, these systems are not expected to produce a sterile food. Sterilization is considered to be a process by which all forms of life are destroyed. When subjected to a lethal process, a bacterial culture is reduced at a rate that is approximately logarithmic. This indicates a first-order reaction. The inactivation or death of cells can be determined by theformula
$$ K=\frac{\log a-\log b}{t} $$
where K is the death rate, a is the initial number of organisms, and b is the number of cells remaining at time t.


Heat Resistance Ethylene Oxide Propylene Oxide Ground Beef Bacterial Spore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abad-Lozano, J. L., and Rodriguez-Valera, F. 1984. Photodynamic inactivation of Bacillus subtilis spores. J. Appi. Bacteriol. 57: 339–343.Google Scholar
  2. Abshire, R. L., and Dunton, H. 1981. Resistance of selected strains of Pseudomonas aeruginosa to low-intensity ultraviolet radiation. Appl. Environ. Microbiol. 41: 1419–1423.Google Scholar
  3. Adams, D. M. 1974. Requirement for and sensitivity to lysozyme by Clostridium perfringens spores heated at ultrahigh temperatures. Appi. Microbiol. 27: 797–801.Google Scholar
  4. Adams, J. P.; Peterson, W. R.; and Otwell, W. S. 1983. Processing of seafood in institutional-sized retort pouches. Food Technol. 37(4): 123–127, 142.Google Scholar
  5. Adkins, B., Jr., and Allen, W. E. 1982. Photoreactivation of ultraviolet-irradiation damage in Staphylococcus aureus. J. Gen. Appl. Microbiol. 28: 101–110.Google Scholar
  6. Ahmed, F. I. K., and Russell, C. 1975. Synergism between ultrasonic waves and hydrogen peroxide in the killing of micro-organisms. J. Appl. Bacteriol. 39: 31–40.Google Scholar
  7. Alderton, G.; Chen, J. K.: and Ito, K. A. 1980. Heat resistance of the chemical resistance forms of Clostridium botulinum 62A spores over the water activity range of 0 to 0. Appi. Environ. Microbiol. 40: 511–515.Google Scholar
  8. Algie, J. E. 1980. The heat resistance of bacterial spores due to their partial dehydration by reverse osmosis. Curr. Microbiol. 3: 287–290.Google Scholar
  9. Anderson, A. W.; Nordon, H. C.; Cain, R. F.; Parrish, G.; and Duggan, D. 1956. Studies on a radio-resistant Micrococcus. 1. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol. 10: 575–578.Google Scholar
  10. Anellis, A., Berkowitz, D.; Jarboe, C.; and El-Bisi, H. M. 1967. Radiation sterilization of prototype military foods. II. Cured ham. Appi. Microbiol. 15: 166–177.Google Scholar
  11. Anellis, A., Berkowitz, D.; Jarboe, C.; and El-Bisi, H. M. 1969. Radiation sterilization of prototype military foods. III. Pork loin. Appl. Microbiol. 18: 604–611.Google Scholar
  12. Anellis, A.; Grecz, N.; Huber, D. A.; Berkowitz, D.; Schneider, M. D., and Simon, M. 1965. Radiation sterilization of bacon for military feeding. Appl. Microbiol. 13: 37–42.Google Scholar
  13. Angel, S., Juven, B. J.; Weinberg, Z. G.; Lindner, P.; and Eisenberg, E. 1986. Effects of radurization and refrigerated storage on quality and shelf-life of freshwater prawns, Macrobrachium rosenbergii. J. Food Prot. 49: 142–145.Google Scholar
  14. Antoku, S. 1983. Radiosensitization and radioprotection of E. coli by thiourea in nitrous oxide saturated suspensions. Int. J. Radiat. Biol. 43: 451–458.Google Scholar
  15. Banks, J. G.; Board, R. G.; and Paton, J. 1985. Illuminated rose bengal causes adenosine triphosphate (ATP) depletion and microbial death. Lett. Appi. Microbiol. 1: 7–11.Google Scholar
  16. Bayliss, C. E., and Waites, W. M. 1980. The effect of hydrogen peroxide and ultraviolet irradiation on non-sporing bacteria. J Appl. Bacteriol. 48: 417–422.Google Scholar
  17. Bayliss, C. E., and Waites, W. M. 1982. Effect of simultaneous high intensity ultraviolet irradiation and hydrogen peroxide on bacterial spores. J. Food Technol. 17: 467–470.Google Scholar
  18. Beaman, T. C., and Gerhardt, P. 1986. Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaptation. Appi. Environ. Microbiol. 52: 1242–1246.Google Scholar
  19. Bean, P. G., and Roberts, T. A. 1975. Effect of sodium chloride and sodium nitrite on the heat resistance of Staphylococcus aureus NCTC 10652 in buffer and meat macerate. J. Food Technol. 10: 327–332.Google Scholar
  20. Beattie, B. B., and Wiblin, W. 1984. Economic feasibility of fruit and vegetable irradiation in Australia. Food Technol. Aust. 36: 367–370.Google Scholar
  21. Bell, R. G. 1983. The effect of variation of thermal processing on the microbial spoilage of chub-packed luncheon meat. J Appl. Bacteriol. 54: 249–255.Google Scholar
  22. Bell, R. G., and DeLacy, K. M. 1984. Influence of NaC1, NaNO2 and oxygen on the germination and growth of Bacillus licheniformis, a spoilage organism of chum-packed luncheon meat. J. Appl. Bacteriol. 57: 523–530.Google Scholar
  23. Bell, T. A.; Turney, L. J.; and Etchells, J. L. 1972. Influence of different organic acids on the firmness of fresh-pack pickles. J. Food Sci. 37: 446–449.Google Scholar
  24. Berck, B. 1965. Fumigation of cereals and cereal products-research and practice. Cereal Sci. Today 10 (4): 112–117.Google Scholar
  25. Berry, M. R., Jr., and Kohnhorst, A. L. 1983. Critical factors for thermal processing of institutional pouches. J. Food Prot. 46: 476–489.Google Scholar
  26. Beuchat, L. R. 1981. Combined effects of solutes and food preservatives on rates of inactivation of and colony formation by heated spores and vegetative cells of molds. Appl. Environ. Microbiol. 41: 472–477.Google Scholar
  27. Beverly, R. G.; Strasser, J.; and Wright, B. 1980. Critical factors in filling and sterilizing of institutional pouches. Food Technol. 34 (9): 44–48.Google Scholar
  28. Billen, D. 1983. The effects of radioprotectors on DNA polymerase I-directed repair synthesis and DNA strand breaks in toluene-treated and X-irradiated Escherichia coli. Radiat. Res. 95: 158–164.Google Scholar
  29. Bjeldanes, L. F.; Morris, M. M.; Felton, J. S.; Healy, S.; Stuermer, D.; Berry, P.; Timourian, H.; and Hatch, F. T. 1982. Mutagens from the cooking of food. III. Survey by Ames/ Salmonella test of mutagen formation in secondary sources of cooked dietary protein. Food Chem. Toxicol. 20: 365–369.Google Scholar
  30. Blanchard, R. O., and Hanlin, R. T. 1973. Effect of propylene oxide treatment on the microflora of pecans. Appi. Microbiol. 26: 768–772.Google Scholar
  31. Blankenship, L. C. 1978. Survival of a Salmonella typhimurium experimental contaminant during cooking of beef roasts. Appl. Environ. Microbiol. 35: 1160–1165.Google Scholar
  32. Brake, R. J.; Murrell, K. D.; Ray, E. E.; Thomas, J. D.; Muggenburg, B. A.; and Sivinski, J. S. 1985. Destruction of Trichinella spiralis by low-dose irradiation of infected pork. J. Food Safety. 7: 127–143.Google Scholar
  33. Bresler, S. E.; Noskin, L. A.; and Suslov, A. V. 1984. Induction by gamma irradiation of double-strand breaks of Escherichia coli chromosomes and their role in cell lethality. Biophys. J. 45: 749–754.Google Scholar
  34. Brooks, B. W., and Murray, R. G. E. 1981. Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int. J. Syst. Bacteriol. 31: 353–360.Google Scholar
  35. Brown, C., and Russo, D. J. 1979. Ultraviolet light disinfection of shellfish hatchery sea water. 1. Elimination of five pathogenic bacteria. Aquaculture 17: 17–23.Google Scholar
  36. Bryan, F. L.; Matsuura, H.; Sugi, M.; Spiro, L.; Fukunaga, I.; and Sakai, B. 1982. Timetemperature survey of Hawaiian-style foods. J. Food Prot. 45: 430–434.Google Scholar
  37. Brynjolfsson, A. 1985. Wholesomeness of irradiated foods: A review. J. Food Safety 7: 107–126.Google Scholar
  38. Burgos, J.; Ordônez, J. A.; and Sala, E 1972. Effect of ultrasonic waves on the heat resistance of Bacillus cereus and Bacillus licheniformis spores, Appi. Microbiol. 24: 497–498.Google Scholar
  39. Burton, H. 1984. Reviews of the progress of dairy science: The bacteriological, chemical, biochemical and physical changes that occur in milk at temperatures of 100–150°C. J. Dairy Res. 51: 341–363.Google Scholar
  40. Butler, R. C.; Lund, V.; and Carlson, D. A. 1987. Susceptibility of Campylobacterjejuni and Yersinia enterocolitica to UV radiation. Appi. Environ. Microbiol. 53: 375–378.Google Scholar
  41. Carlson, V. R. 1984. Current aseptic packaging techniques. Food Technol. 38 (12): 47–50.Google Scholar
  42. Cerf, O. 1977. Tailing of survival curves of bacterial spores. J. Appi. Bacteriol. 42: 1–19.Google Scholar
  43. Chang, J. C. H.; Ossoff, S. F.; Lobe, D. C.; Dorfman, M. H.; Dumais, C. M.; Qualls, R. G.; and Johnson, J. D. 1985. UV inactivation of pathogenic and indicator microorganisms. Appi. Environ. Microbiol. 49: 1361–1365.Google Scholar
  44. Chia, S. S.; Baker, R. C.; and Hotchkiss, J. H. 1983. Quality comparison of thermoprocessed fishery products in cans and retortable pouches. J. Food Sci. 48: 1521–1525, 1531.Google Scholar
  45. Cichy, R. F.; Zabik, M. E.; and Weaver, C. M. 1979. Polychorinated biphenyl reduction in lake trout by irradiation and broiling. Bull. Environ. Contam. Toxicol. 22: 807–812.Google Scholar
  46. Cin, D. A., and Kroger, M. 1982. Effects of various kitchen heat treatments, ultraviolet light, and gamma irradiation on Mirex insecticide residues in fish. J. Food Sci. 47: 350–354.Google Scholar
  47. Cliver, D. A. 1971. Transmission of viruses through foods. Crit. Rev. Environ. Control 1 (4): 551–579.Google Scholar
  48. Cockey, R. R., and Tatro, M. C. 1974. Survival studies with spores of Clostridium botulinum type E in pasteurized meat of the blue crab Callinectes sapidus. Appi. Microbiol. 27: 629–633.Google Scholar
  49. Conter, A.; Dupouy, D.; and Planet, H. 1983. Demonstration of a biological effect of natural ionizing radiations. Int. J. Radiat. Biol. 43: 421–432.Google Scholar
  50. Cook, A. M., and Gilbert, R.J. 1968. Factors affecting the heat resistance of Bacillus stearothermophilus spores. II. The effect of sporulating conditions and nature of the heating medium. J Food Technol. 3: 295–302.Google Scholar
  51. Cook, A. M., and Gilbert, R.J. 1969. The effect of sodium chloride on heat resistance and recovery of heated spores of Bacillus stearothermophilus. j Appi. Bacterial. 32: 96–102.Google Scholar
  52. Cornforth, D. P.; Brennand, C. P.; Brown, R. J.; and Godfrey, D. 1982. Evaluation of various methods of roasting frozen turkeys. J. Food Sci. 47: 1108–1112.Google Scholar
  53. Corry, J. E. L. 1974. The effect of sugars and polyols on the heat resistance of salmonellae. J. Appi. Bacteriol. 37: 31–43.Google Scholar
  54. Corry, J. E. L. 1976a. The effect of sugars and polyols on the heat resistance and morphologyGoogle Scholar
  55. of osmophilic yeasts. J. Appi. Bacteriol. 40: 269–276.Google Scholar
  56. Corry, J. E. L. 1976b. Sugar and polyol permeability of Salmonella and osmophilic yeast cell membranes measured by turbidimetry, and its relation to heat resistance. J. Appi. Bacteriol. 40: 277–284.Google Scholar
  57. Craven, S. E., and Blankenship, L. C. 1983. Increased heat resistance of salmonellae in beef with added soy proteins. J. Food Prot. 46: 380–384.Google Scholar
  58. Crisley, F. D.; Peeler, J. T.; Angelotti, R.; and Hall, H. E. 1968. Thermal resistance of spores of five strains of Clostridium botulinum type E in ground whitefish chubs. J. Food Sci. 33: 411–416.Google Scholar
  59. Croci, C. A., and Curzio, O. A. 1983. The influence of gamma-irradiation on the storage life of “red” variety garlic. J. Food Proc. Pres. 7: 179–183.Google Scholar
  60. Cunningham, F. E., and Lineweaver, H. 1965. Stabilization of egg-white proteins to pasteurization temperatures above 60°C. Food Technol. 19 (9): 136–141.Google Scholar
  61. Dadd, A. H., and Daley, G. M. 1980. Resistance of micro-organisms to inactivation by gaseous ethylene oxide. J. Appi. Bacteriol. 49: 89–101.Google Scholar
  62. Dadd, A. H., and Daley, G. M. 1982. Role of the coat in resistance of bacterial spores to inactivation by ethylene oxide. J. Appi. Bacteriol. 53: 109–116.Google Scholar
  63. Dadd, A. H.; McCormick, K. E.; and Daley, G. M. 1983. Factors influencing the resistance of biological monitors to ethylene oxide. J. Appi. Bacteriol. 55: 39–48.Google Scholar
  64. Dail, R. 1985. Calculation of required hold time of aseptically processed low acid foods containing particulates utilizing the Ball method. J. Food Sci. 50: 1703–1706.Dempster, J. F. 1985. Radiation preservation of meat and meat products: A review. Meat Sci. 12: 61–89.Google Scholar
  65. Dempster, J. F.; Hawrysh, Z. J.; Shand, P.; Lahola-Chomiak, L.; and Corletto, L. 1985. Effect of low-dose irradiation (radurization) on the shelf life of beefburgers stored at 3°C. J. Food Technol. 20: 145–154.Google Scholar
  66. Denny, C. B. 1972. Collaborative study of a method for the determination of commercial sterility of low-acid canned foods./ Assoc. Offic. Anal. Chem. 55: 613–616.Google Scholar
  67. Desrosier, N. W., and Desrosier, J. N. 1977. The Technology of Food Preservation. 4th ed. Westport, Conn.: AVI Publishing Co.Google Scholar
  68. Diehl, J. F. 1983. Food irradiation-status and prospects./ Ind. Irradiat. Technol. 1: 77–87.Google Scholar
  69. Diehl, J. F., and Scherz, H. 1975. Estimation of radiolytic products as a basis for evaluating the wholesomeness of irradiated foods. Int. J. Appl. Radiat. Isotop. 26: 499–507.Google Scholar
  70. Digioia, G. A.; Licciardello, J. J.; Nickerson, J. T. R.; and Goldblith, S. A. 1970. Thermal inactivation of Newcastle disease virus. Appi. Microbiol. 19: 451–454.Google Scholar
  71. Digirolamo, R.; Liston, J.; and Matches, J. R. 1970. Survival of virus in chilled, frozen and processed oysters. Appi. Microbiol. 20: 58–63.Google Scholar
  72. Doores, S., and Westhoff, D. 1981. Heat resistance of Sporo/actobacillus inulinus. J. Food Sci. 46: 810–812.Google Scholar
  73. Doyle, M. P., and Marth, E. H. 1975. Thermal inactivation of conidia from Aspergillus flavus and Aspergillus parasiticus. 1. Effects of moist heat, age of conidia, and sporulation medium./ Milk Food Technol. 38: 678–682.Google Scholar
  74. Edebo, L. 1969. Production of photons in the bactericidal effect of transient electric arcs in aqueous systems. Appl. Microbiol. 17: 48–53.Google Scholar
  75. El-Banna, A. A., and Hurst, A. 1983. Survival in foods of Staphylococcus aureus grown under optimal and stressed conditions and the effect of some food preservatives. Can. J. Microbiol. 29: 297–302.Google Scholar
  76. El-Zawahry, Y. A., and Rowley, D. B. 1979. Radiation resistance and injury of Yersinia enterocolitica. Appi. Environ. Microbiol. 37: 50–54.Google Scholar
  77. Embree, J. W.; Lyon, J. P.; and Hine, C. H. 1977. The mutagenic potential of ethylene oxide using the dominant-lethal assay in rats. Toxicol. Appl. Pharmacol. 40: 261–267.Google Scholar
  78. Ernst, R. B. 1974. “Ethylene Oxide Gaseous Sterilization.” In International Symposium on Sterilization and Sterility Testing of Biological Substances. R. H. Regamey, F. P. Gallardo, and W. Hennessen, eds. Basel: S. Karger.Google Scholar
  79. Evancho, G. M.; Ashton, D. H.; and Briskey, E.J. 1973. Conditions necessary for sterility testing of heat processed canned foods. J. Food Sci. 38: 185–188.Google Scholar
  80. Farrall, A. W. 1976. Food Engineering Systems, Vol. 1. Operations. Westport, Conn.: AVI Publishing Co.Google Scholar
  81. FDA. 1977. Code of Federal Regulations. Title 21. Food and Drugs. Food and Drug Administration, Government Services Administration, Washington, D. C.Google Scholar
  82. Feeherry, E. E.; Munsey, D. T.; and Rowley, D. B. 1987. Thermal inactivation and injury of Bacillus stearothermophilus spores. Appt. Environ. Microbiol. 53: 365–370.Google Scholar
  83. Feig, S., and Stersky, A. K. 1981. Characterization of a heat-resistant strain of Bacillus coagulans isolated from cream style corn. J. Food Sci. 46: 135–137.Google Scholar
  84. Filppi, J. R. 1973. Thermal characterization of poliovirus type 1 in ground beef containing three levels of fat. Ph.D. Thesis. Columbus: Ohio State University.Google Scholar
  85. Filppi, J. A., and Banwart, G. J. 1974. Effect of the fat content of ground beef on the heat inactivation of poliovirus. J. Food Sci. 39: 865–868.Google Scholar
  86. Firstenberg-Eden, R.; Rosen, B.; and Mannheim, C. H. 1977. Death and injury of Staphylo- coccus aureus during thermal treatment of milk. Can. J. Microbiol. 23: 1034–1037.Google Scholar
  87. Flowers, R. S., and Adams, D. M. 1976. Spore membrane(s) as the site of damage within heated Clostridium perfringens spores. J. Bacteriol. 125: 429–434.Google Scholar
  88. Franco, S. L.; Giménez, J. L.; Sanchez, E. M.; and Romojaro, F. 1986. Effectiveness of ethylene oxide and gamma irradiation on the microbiological population of three types of paprika. J. Food Sci. 51: 1571–1572, 1574.Google Scholar
  89. Fricker, R. 1984. The flash pasteurization of beer.]. Inst. Brew. 90: 146–152.Google Scholar
  90. Friedberg, E. C. 1975. DNA repair of ultraviolet-irradiated bacteriophage T4. Photochem. Photobiol. 21: 277–289.Google Scholar
  91. Fruin, J. T., and Guthertz, L. S. 1982. Survival of bue, teria in food cooked by microwave oven, conventional oven and slow cookers. J. Food Prot. 45: 695–698.Google Scholar
  92. Gilpin, R. W.; Dillon, S. B.; Keyser, P.; Androkites, A.; Berube, M.; Carpendale, N.; Skorina, J.; Hurley, J.; and Kaplan, A. M. 1985. Disinfection of circulating water systems by ultraviolet light and halogenation. Water Res. 19: 839–848.Google Scholar
  93. Glaser, Z. R. 1979. Ethylene oxide: Toxicology review and field study results of hospital use./ Environ. Pathol. Toxicol. 2 (5): 173–208.Google Scholar
  94. Goldblith, S. A. 1971. A condensed history of the science and technology of thermal processing-Part 1. Food Technol. 25: 1256–1262.Google Scholar
  95. 1972.
    A condensed history of the science and technology of thermal processing-Part 2. Food Technol. 26(1): 64–69.Google Scholar
  96. Goodfellow, S. J., and Brown, W. L. 1978. Fate of Salmonella inoculated into beef for cooking. f: Food Prot. 41: 598–605.Google Scholar
  97. Gould, G. W. 1977. Recent advances in the understanding of resistance and dormancy in bacterial spores. J. Appl. Bacteriol. 42: 297–309.Google Scholar
  98. Gould, G. W., and Dring, G. J. 1974. Mechanisms of spore heat resistance. Adv. Microbial Physiol. 11: 137–164.Google Scholar
  99. Gould, G. W., and Dring, G. J. 1975a. Heat resistance of bacterial endospores and concept of an expanded osmoregulatory cortex. Nature 258: 402–405.Google Scholar
  100. Gould, G. W., and Dring, G. J. 1975b. Role of an expanded cortex in resistance of bacterial endospores. Spores 6: 541–546.Google Scholar
  101. Graubmann, S., and Dikomey, E. 1983. Induction and repair of DNA strand breaks in CHO-cells irradiated in various phases of the cycle. Int. J. Radial. Biol. 43: 475–483.Google Scholar
  102. Gray, R. J. H.; Witter, L. D.; and Ordal, Z. J. 1973. Characterization of mild thermal stress in Pseudomonas fluorescens and its repair. Appl. Microbiol. 26: 78–85.Google Scholar
  103. Grecz, N.; Al-Harithy, R.; and Jaw, R. 1986. Radiation sterilization of spices for hospital food services and patient care. J. Food Safety 7: 241–255.Google Scholar
  104. Grecz, N.; Walker, A. A.; Anellis, A.; and Berkowitz, D. 1971. Effect of irradiation temperature in the range–196 to 95 C on the resistance of spores of Clostridium botulinum 33A in cooked beef. Can. J. Microbiol. 17: 135–142.Google Scholar
  105. Grieme, L. E., and Barbano, D. M. 1983. Method for use of a differential scanning calorimeter for determination of bacterial thermal death times. J. Food Prot. 46: 797–801.Google Scholar
  106. Griffiths, M. W., and Phillips, J. D. 1984. Detection of post-pasteurization contamination of cream by impedimetric methods. J. Appl. Bacteriol. 57: 107–114.Google Scholar
  107. Han, Y. W.; Zhang, H. I.; and Krochta, J. M. 1976. Death rates of bacterial spores: Mathematical models. Can. J. Microbial. 22: 295–300.Google Scholar
  108. Hansen, A. P.; Swartzel, K. R.; and Giesbrecht, F. G. 1980. Effect of temperature and time of processing and storage on consumer acceptability of ultra-high temperature steam injected whole milk. J. Dairy Sci. 63: 187–192.Google Scholar
  109. Härnuiv, B. G., Johansson, M., and Snygg, B. G. 1977. Heat resistance of Bacillus stearothermophilus spores at different water activities./ Food Sci. 42: 91–93.Google Scholar
  110. Harrison, A. P., Jr. 1967. Survival of bacteria. Harmful effects of light, with some comparisons with other adverse physical agents. Annu. Rev. Microbial. 21: 143–156.Google Scholar
  111. Hashimoto, T.; Frieben, W. R.; and Conti, S. F. 1972. Kinetics of germination of heatinjured Bacillus cereus spores. Spores 5: 409–415.Google Scholar
  112. Hastings, J. W., and Holzapfel, W. H. 1987. Conventional taxonomy of lactobacilli surviving radurization of meat. J. Appi. Bacterial. 62: 209–216.Google Scholar
  113. Hastings, J. W.; Holzapfel, W. H.; and Niemand, J. G. 1986. Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment. Appl. Environ. Microbial. 52: 898–901.Google Scholar
  114. Hatcher, W. S.; Weihe, J. L; Murdock, D. I.; Folinazzo, J. F.; Hill, E. C.; and Albrigo, L. G. 1979. Growth requirements and thermal resistance of fungi belonging to the genus Byssochlamys, J. Food Sci. 44: 118–122.Google Scholar
  115. Hayakawa, K. 1978. A critical review of mathematical procedures for determining proper heat sterilization processes. Food Technol. 32 (3): 59–65.Google Scholar
  116. Hittelman, W. N., and Pollard, M. 1982. A comparison of the DNA and chromosome repair kinetics after -y-irradiation. Radiat. Res. 92: 497–509.Google Scholar
  117. Hoffmann, G. R., and Morgan, R. W. 1976. The effect of ultraviolet light on the frequency of a genetic duplication in Salmonella typhimurium. Radiat. Res. 67: 114–119.Google Scholar
  118. Hsieh, E; Acott, K.; and Labuza, T. P. 1976. Death kinetics of pathogens in a pasta product. J. Food Sci. 41: 516–519.Google Scholar
  119. Huang, Y., and Toledo, R. 1982. Effect of high doses of high and low intensity UV irradiation on surface microbiological counts and storage-life of fish./ Food Sci. 47: 1667–1669, 1731.Google Scholar
  120. Hülsheger, H.; Potel, J.; and Niemann, E.-G. 1983. Electric field effects on bacteria and yeast cells. Radiat. Environ. Biophys. 22: 149–162.Google Scholar
  121. Humphrey, T. J.; Lanning, D. G.; and Beresford, D. 1981. The effect of pH adjustment on the microbiology of chicken scald-tank water with particular reference to the death rate of salmonellas. J. Appi. Bacteriol. 51: 517–527.Google Scholar
  122. Hyun, H. H.; Zeikus, J. G.; Longin, R.; Millet, J.; and Ryter, A. 1983. Ultrastructure and extreme heat resistance of spores from thermophilic Clostridium species. J. Bacterial. 156: 1332–1337.Google Scholar
  123. Ito, H., and Iizuka, H. 1971. Taxonomic studies on a radio-resistant Pseudomonas. Agr. Biol. Chem. 35: 1566–1571.Google Scholar
  124. Ito, H.; Iizuka, H.; and Sato, T. 1974. A new radio-resistant yeast of Trichosporon oryzae nov. sp. isolated from rice. Agr. Biol. Chem. 38: 1597–1602.Google Scholar
  125. Ito, H.; Sato, T.; and Iizuka, H. 1976. Study of the intermediate type of Moraxella and Acinetobacter occurring in radurized Vienna sausages. Agr. Biol. Chem. 40: 867–873.Google Scholar
  126. Ito, K. A. 1981. Thermophilic organisms in food spoilage: flat-sour aerobes. J. Food Prot. 44: 157–163.Google Scholar
  127. Ito, K. A., and Seeger, M. L. 1980. Effects of germicides on microorganisms in can cooling waters. J. Food Prot. 43: 484–487.Google Scholar
  128. Ito, K. A., and Stevenson, K. E. 1984. Sterilization of packaging materials using aseptic systems. Food Technol. 38 (3): 60–62.Google Scholar
  129. Iwanami, S., and Oda, N. 1985. Theory of survival of bacteria exposed to ionizing radiation. 1. X and y rays. Radiat. Res. 102: 46–58.Google Scholar
  130. Jami, M. S.; Pubols, M. H.; and McGinnis, J. 1980. Effect of gamma irradiation on the physicochemical properties of rye. Poultry Sci. 59: 253–257.Google Scholar
  131. Janky, D. M., and Oblinger, J. L. 1976. Microwave versus water-bath precooking of turkey rolls. Poultry Sci. 55: 1549–1553.Google Scholar
  132. Jelen, P. 1982. Experience with direct and indirect UHT processing of milk-a Canadian viewpoint. J. Food Prot. 45: 878–883.Google Scholar
  133. Johnson, K. M.; Nelson, C. L.; and Busta, F. F. 1982. Germination and heat resistance of Bacillus cereus spores from strains associated with diarrheal and emetic food-borne illnesses. J. Food Sci. 47: 1268–1271.Google Scholar
  134. Josephson, E. 1969. Nuclear applications in the food industry. Proc. 44th Annu. Conf. Am. Industrial Develop. Counc., 134–143.Google Scholar
  135. Juven, B.J.; Ben-Shalom, N.; and Weisslowicz, H. 1983. Identification of chemical constituents of tomato juice which affect the heat resistance of Lactobacillus fermentum. J. Appt. Bacteriol. 54: 335–338.Google Scholar
  136. Kaess, G., and Weidemann, J. F. 1973. Effects of ultraviolet irradiation on the growth of micro-organisms on chilled beef sides./ Food Technol. 8: 59–69.Google Scholar
  137. Katsui, N.; Tsuchido, T.; Takano, M.; and Shibasaki, I. 1982. Viability of heat-stressed cells of micro-organisms as influenced by pre-incubation and post-incubation temperatures./ Appt. Bacteriol. 53: 103–108.Google Scholar
  138. Keller, L. C., and Maxcy, R. B. 1984. Effect of physiological age on radiation resistance of some bacteria that are highly radiation resistant. Appt. Environ. Microbiol. 47: 915–918.Google Scholar
  139. Keogh, B. P., and Pettingill, G. 1984. Influence of enzyme activity of bacteria and leucocytes in raw milk on age gelation after UHT processing. J. Food Prot. 47: 105–107.Google Scholar
  140. Knize, M. G.; Andresen, B. D.; Healy, S. K.; Shen, N. H.; Lewis, P. R.; Bjeldanes, L. E; Hatch, E. T.; and Felton, J. S. 1985. Effects of temperature, patty thickness and fat content on the production of mutagens in fried ground beef. Food Chem. Toxicol. 23: 1035–1040.Google Scholar
  141. Kopelman, M.; Markakis, P.; and Schweigert, B. S. 1968. Effect of ionizing radiations on resting conidia of Aspergillus Jtavus. J. Food Sci. 32: 694–696.Google Scholar
  142. Kotula, A. W.; Murrell, K. D.; Acosta-Stein, L.; Lamb, L.; and Douglass, L. 1983. Destruction of Trichinella spiralis during cooking./ Food Sci. 48, 765–768.Google Scholar
  143. Kudo, T., and Horikoshi, K. 1983. The effect of pH on heat-resistance of spores of alkalophilic Bacillus No. 2b-2. Agr. Biol. Chem. 47: 403–404.Google Scholar
  144. Kwast, R. H., and Verrips, C. T. 1982. Heat resistance of Salmonella senfienberg 775 W at various sucrose concentrations in distilled water. Eur. J. Appt. Microbiol. Biotechnol. 14: 193–201.Google Scholar
  145. Kwon, J. H.; Byun, M. W.; and Cho, H. O. 1985. Effects of gamma irradiation dose and timing of treatment after harvest on the storeability of garlic bulbs./ Food Sci. 50: 379–381.Google Scholar
  146. Lambert, J. D., and Maxcy, R. B. 1984. Effect of gamma radiation on Campylobacter jejuni. J. Food Sci. 49: 665–667, 674.Google Scholar
  147. Lee, J. S., and Pfeifer, D. K. 1975. Microbiological characteristics of Dungeness crab (Cancer magister). Appt. Microbiol. 30: 72–78.Google Scholar
  148. Leonard, S. J., et al. 1983. High vacuum flame sterilized fruits: Storage study on sliced clingstone peaches, sliced Bartlett pears, and diced fruit. J. Food Sci. 48: 1484–1491.Google Scholar
  149. Licciardello, J. J.; Ravesi, E. M.; Tuhkunen, B. E.; and Racicot, L. D. 1984. Effect of some potentially synergistic treatments in combination with 100 krad irradiation on the iced shelf life of cod fillets./ Food Sci. 49: 1341–1346, 1375.Google Scholar
  150. Lin, J.-Y.; Lee, H.; and Huang, H.A. 1982. Formation of mutagens in boiled pork extract. Food Chem. Toxicol. 20: 531–533.Google Scholar
  151. Losty, T.; Roth, J. S.; and Shults, G. 1973. Effect of -y irradiation and heating on proteolytic activity of meat samples. J. Agr. Food Chem. 21: 275–277.Google Scholar
  152. Lovett, J.; Bradshaw, J. G.; and Peeler, J. T. 1982. Thermal inactivation of Yersinia enterocolitica in milk. Appl. Environ. Microbiol. 44: 517–519.Google Scholar
  153. Lynch, D. W.; Lewis, T. R.; Moorman, W. J.; Burg, J. R.; Groth, D. H.; Khan, A.; Ackerman. L.J. and Cockrell, B. Y. 1984. Carcinogenic and toxicologic effects of inhaled ethylene oxide and propylene oxide in F344 rats. Toxicol. App. Pharmacol. 76: 69–84.Google Scholar
  154. Lynt, R. K.; Solomon, H. M.; and Kautter, D. A. 1984. Heat resistance of Clostridium botulinum type G in phosphate buffer./ Food Prot. 47: 463–466.Google Scholar
  155. Lynt, R. K.; Solomon, H. M.; Lilly, T., Jr., and Kautter, D. A. 1977. Thermal death time of Clostridium botulinum type E in meat of the blue crab./ Food Sci. 42: 1022–1025, 1037.Google Scholar
  156. McAlister, L., and Finkelstein, D. B. 1980. Heat shock proteins and thermal resistance in yeast. Biochem. Biophys. Res. Commun. 93: 819–824.Google Scholar
  157. MacArthur, L. A., and D’Appolonia, B. L. 1983. Gamma radiation of wheat. 1. Effects on dough and baking properties. Cereal Chem. 60: 456–460.Google Scholar
  158. Mans, J. 1987. Disinfect water with ultraviolet light. Prep. Foods 156 (3): 72–74.Google Scholar
  159. Marquis, R. E., and Bender, G. R. 1985. Mineralization and heat resistance of bacterial spores./ Bacteriol. 161: 789–791.Google Scholar
  160. Mehta, R. S. 1980. Milk processed at ultra-high temperatures-A review./ Food Prot. 43: 212–225.Google Scholar
  161. Merritt, C., Jr. 1980. The analysis of radiolysis products in meats and meat substances. Food Irradiation Information. No. 10. International Project in the Field of Food Irradiation. Karlsruhe, Fed. Rep. Germany.Google Scholar
  162. Merson, R. L.; Singh, R. P.; and Carroad, P. A. 1978. An evaluation of Ball’s formula method of thermal process calculations. Food Technol. 32(3): 66–72, 75.Google Scholar
  163. Michels, M. J. M., and Schram, B. L. 1979. Effect of handling procedures on the postprocess contamination of retort pouches./ Appl Bacteriol. 47: 105–111.Google Scholar
  164. Milbourne, K. 1983. Thermal tolerance of Lactobacillus viridescens in ham. Meat Sci. 9: 113–119.Google Scholar
  165. Mitchell, G. E., and Ewings, K. N. 1985. Quantification of bacterial proteolysis causing gelation in UHT-treated milk. N. Z. J. Dairy Sci. Technol. 20: 65–76.Google Scholar
  166. Miura, T.; Sakaguchi, S.; Sakaguchi, G.; and Miyaki, K. 1970. “Radiosensitivity of Type E Botulinum Toxin and Its Protection by Proteins, Nucleic Acids, and Some Related Substances.” In Proceedings of the First U.S.-Japan Conference on Toxic Micro-organisms. M. Herzberg, ed. Washington, D.C.: U.S. Department of the Interior.Google Scholar
  167. Mulder, R. W. A. W. 1984. Ionising energy treatment of poultry. Food Technol. Aust. 36: 418–420.Google Scholar
  168. Murrell, W. G., and Scott, W. J. 1966. The heat resistance of bacterial spores at various water activities./ Gen. Microbiol. 43: 411–425.Google Scholar
  169. National Canners Association Research Laboratories. 1968. Laboratory Manual for Food Canners and Processors. Vol. 1. Microbiology and Processing. Westport, Conn.: AVI Publishing Co.Google Scholar
  170. Nawar, W. W. 1978. Reaction mechanisms in the radiolysis of fats: A review. J Agr. Food Chem. 26: 21–25.Google Scholar
  171. Nerkar, D. P., and Lewis, N. E. 1982. Radicidation for elimination of salmonellae in frog legs./ Food Prot. 45: 820–823.Google Scholar
  172. Ng. H. 1982. Development of high heat resistance in Arizona neotype by preincubation at 35°C in media containing NaCl. Appl. Environ. Microbiol. 43: 1294–1299.Google Scholar
  173. Nickerson, J. T. R., and Ronsivalli, L. J. 1979. Elementary Food Science. 2d ed. Westport, Conn.: AVI Publishing Co.Google Scholar
  174. Niemand, J. G.; van der Linde, H. J.; and Holzapfel, W. H. 1981. Radurization of prime beef cuts./ Food Prot. 44: 677–681.Google Scholar
  175. Odlaug, T. E., and Pflug, I. J. 1977. Thermal destruction of Clostridium botulinum spores suspended in tomato juice in aluminum thermal death time tubes. Appl. Environ. Microbiol. 34: 23–29.Google Scholar
  176. Ordonez, J. A., and Burgos, J. 1976. Effect of ultrasonic waves on the heat resistance of Bacillus spores. Appi. Environ. Microbiol. 32: 183–184.Google Scholar
  177. Palumbo, S. A.; Jenkins, R. K.; Buchanan, R. L.; and Thayer, D. W. 1986. Determination of irradiation D-values for Aeromonas hydrophila. J. Food Prot. 49: 189–191.Google Scholar
  178. Pang, K. A.; Carroad, P. A.; and Wilson, A. W. 1983. Effect of culture pH on D value, cell growth and sporulation rates of P. A. 3679 spores produced in an anaerobic fermentor. J. Food Sci. 48: 467–470.Google Scholar
  179. Paredes-López, O., and Covarrubias-Alvarez, M. M. 1984. Influence of gamma radiation on the rheological and functional properties of bread wheats. J. Food Technol. 19: 225–231.Google Scholar
  180. Parry, J. M., and Gilbert, R. J. 1980. Studies on the heat resistance of Bacillus cereus spores and growth of the organism in boiled rice. J. Hyg. Comb. 84: 77–82.Google Scholar
  181. Paster, N.; Barkai-Golan, R.; and Padova, R. 1985. Effect of gamma radiation on ochratoxin production by the fungus Aspergillus ochraceus. J. Sci. Food Agr. 36: 445–449.Google Scholar
  182. Payne, J.; Gooch, J. E. T.; and Barnes, E. M. 1979. Heat-resistant bacteria in pasteurized whole egg./ Appl. Bacteriol. 46: 601–613.Google Scholar
  183. Peak, J. G.; Peak, M. J.; and Foote, C. S. 1982. Effects of glycerol upon the biological actions of near-ultraviolet light: Spectra and concentration dependence for transforming DNA and for Escherichia coli B/r. Photochem. Photobiol. 36: 413–416.Google Scholar
  184. Peak, M. J., and Peak, J. G. 1980. Protection by glycerol against the biological actions of near-ultraviolet light. Radiat. Res. 83: 553–558.Google Scholar
  185. Perkin, A. G. 1985. Review of UHT processing methods./ Soc. Dairy Technol. 38: 69–73. Pflug, I. J., and Christensen, R. 1980. Converting an F-value determined on the basis of one z-value to an F-value determined on the basis of a second z-value. J. Food Sci. 45: 35–40.Google Scholar
  186. Pflug, I. J.; Davidson, P. M.; and Holcomb, R. G. 1981. Incidence of canned food spoilage at the retail level./ Food Prot. 44: 682–685.Google Scholar
  187. Pollard, E. C., and Fugate, J. K., Jr. 1978. Relative rates of repair of single-strand breaks and postirradiation DNA degradation in normal and induced cells of Escherichia coli. Biophys. J. 24: 429–437.Google Scholar
  188. Poulsen, K. P. 1986. Optimization of vegetable blanching. Food Technol. 40(6): 122–129. Prakash, L. 1976. The relation between repair of DNA and radiation and chemical muta-genesis in Saccharomyces cerevisiae. Mutat. Res. 41: 241–248.Google Scholar
  189. Put, H. M. C., and DeJong, J. 1982. Heat resistance studies of yeasts; vegetative cells versus ascospores: Erythromycin inhibition of sporulation in Kluyveromyces and Saccharomyces species. J Appl. Bacteriol. 53: 73–79.Google Scholar
  190. Put, H. M. C.; Witvoet, H. J.; and Warner, W. R. 1980. Mechanism of microbiological leaker spoilage of canned foods: Biophysical aspects./ Food Prot. 43: 488–497.Google Scholar
  191. Qualls, R. G., and Johnson, J. D. 1983. Bioassay and dose measurement in UV disinfection. Appl. Environ. Microbiol. 45: 872–877.Google Scholar
  192. Quesnel, L. B., and Spencer, D. 1985. The effect of visible radiations on the germination and outgrowth of Bacillus spores. Lett. Appi. Microbiol. 1: 33–36.Google Scholar
  193. Rao, V. S., and Vakil, U. K. 1983. Effects of gamma-irradiation on flatulence-causing oligosaccharides in green gram (Phaseolus areus). J. Food Sci. 48: 1791–1795.Google Scholar
  194. Read, R. B., Jr., and Bradshaw, J. G. 1967. rylrradiation of staphylococcal enterotoxin B. Appl. Microbiol. 15: 603–605.Google Scholar
  195. Read, R. B., Jr.; Schwartz, C.; and Litsky, W. 1961. Studies on thermal destruction of Escherichia coli in milk and milk products. Appl. Microbiol. 9: 415–418.Google Scholar
  196. Reddy, S. J.; Pubols, M. H.; and McGinnis, J. 1979. Effect of gamma irradiation on nutritional value of dry field beans (Phaseolus vulgaris) for chicks./ Nutr. 109: 1307–1312.Google Scholar
  197. Reineccius, G. A. 1979. Symposium on meat flavor. Off-flavors in meat and fish-A re-view./ Food Sci. 44: 12–21, 24.Google Scholar
  198. Renner, H. W., et al. 1982. An investigation of the genetic toxicology of irradiated foodstuffs using short-term test systems. III. In vivo tests in small rodents and in Drosophila melanogaster. Food Chem. Toxicol. 20: 867–878.Google Scholar
  199. Restaino, L.; Myron, J. J. J.; Lenovich, L. M.; Bills, S.; and Tscherneff, K. 1984. Antimicrobial effects of ionizing radiation on artificially and naturally contaminated cacao beans. App. Environ. Microbiol. 47: 886–887.Google Scholar
  200. Ritter, J.; O’Leary, J.; and Langlois, B. E. 1979. Fate of selected pathogens inoculated into foods prepared in slow cookers./ Food Prot. 42: 872–876.Google Scholar
  201. Roberts, P. B. 1984. Growth in cadmium-containing medium induces resistance to heat in E. coli. Int. J. Radial. Biol. 45: 27–31.Google Scholar
  202. Roberts, T. A. 1968. Resistance of spores of Clostridium welchii. In Elimination of Harmful Organisms from Food and Feed by Irradiation. International Atomic Energy Agency, Vienna.Google Scholar
  203. Robinson, I., and Adams, R. P. 1978. Ultra-violet treatment of contaminated irrigation water and its effect on the bacteriological quality of celery at harvest./. Appi. Bacteriol. 45: 83–90.Google Scholar
  204. Rosen, C. 1972. Effects of microwaves on food and related materials. Food Technol. 26(7): 36–40, 55Google Scholar
  205. Rowley, D. B., and Brynjolfsson, A. 1980. Potential uses of irradiation in the processing of food. Food Technol. 34 (10): 75–77.Google Scholar
  206. Rowley, D. B.; Firstenberg-Eden, R.; and Shattuck, G. E. 1983. Radiation-injured Clostrid- ium botulinum type E spores: Outgrowth and repair./ Food Sci. 48: 1829–1831, 1848.Google Scholar
  207. Roy, R. J.; Busta, F. F.; and Thompson, D. R. 1981. Thermal inactivation of Clostridium perfringens after growth at several constant and linearly rising temperatures./ Food Sci. 46: 1586–1591.Google Scholar
  208. Russell, A. D., and Harries, D. 1968. Damage to Escherichia coli on exposure to moist heat. Appi. Microbiol. 16: 1394–1399.Google Scholar
  209. Sammartano, L. J., and Tuveson, R. W. 1984. The effects of exogenous catalase on broad-spectrum near-UV (300–400 nm) treated Escherichia coli cells. Photochem. Photobiol. 40: 607–612.Google Scholar
  210. Savagaon, K. A.; Venugopal, V.; Kamat, S. V.; Kumta, U. S.; and Sreenivasan, A. 1972. Radiation preservation of tropical shrimp for ambient temperature storage. 1. Development of a heat-radiation combination process./ Food Sci. 37: 148–150.Google Scholar
  211. Scalzo, A. M.; Dickerson, R. W., Jr.; Read, R. B., Jr.; and Parker, R. W. 1969. Residence times of egg products in holding tubes of egg pasteurizers. Food Technol. 23: 678–681.Google Scholar
  212. Scheie, P., and Ehrenspeck, S. 1973. Large surface blebs on Escherichia coli heated to inactivating temperatures./ Bacteriol 114: 814–818.Google Scholar
  213. Schneider, E., and Kiefer, J. 1976. Interaction of ionizing radiation and ultraviolet-light in diploid yeast strains of different sensitivity. Photochem. Photobiol. 24: 573–578.Google Scholar
  214. Schröder, M. J. A. 1984. Origins and levels of post pasteurization contamination of milk in the dairy and their effects on keeping quality./ Dairy Res. 51: 59–67.Google Scholar
  215. Scott, V. N., and Bernard, D. T. 1982. Heat resistance of spores of non-proteolytic type B Clostridium botulinum. J. Food Prot. 45: 909–912.Google Scholar
  216. Scott, V. N., and Bernard, D. T. 1985. Resistance of yeast to dry heat./ Food Sci. 50: 1754–1755.Google Scholar
  217. Seet, S. T.; Heil, J. R.; Leonard, S.J.; and Brown, W. D. 1983. High vacuum flame sterilization of canned diced tuna: Preliminary process development and quality evaluation. J. Food Sci. 48: 364–369, 374.Google Scholar
  218. Severin, B. F. 1980. Disinfection of municipal wastewater effluents with ultraviolet light. J. Water Poll. Control. Fed. 52: 2007–2018.Google Scholar
  219. Severin, B. F.; Suidan, M. T.; and Engelbrecht, R. S. 1983. Effects of temperature on ultraviolet light disinfection. Environ. Sci. Technol. 17: 717–721.Google Scholar
  220. Shafi, R.; Cotterill, O. J.; and Nichols, M. L. 1970. Microbial flora of commercially pasteurized egg products. Poultry Sci. 49: 578–585.Google Scholar
  221. Sharma, A.; Ghanekar, A. S.; Padwal-Desai, S. R.; and Nadkarni, G. B. 1984. Microbiological status and antifungal properties of irradiated spices. J. Agr. Food Chem. 32: 1061–1063.Google Scholar
  222. Siccardi, A. G. 1969. Effect of R factors and other plasmids on ultraviolet susceptibility and host cell reactivation property of Escherichia coli. J. Bacteriol. 100: 337–346.Google Scholar
  223. Skala, J. H.; McGown, E. L.; and Waring, P. P. 1987. Wholesomeness of irradiated foods. J. Food Prot. 50: 150–160.Google Scholar
  224. Smith, A. M.; Evans, D. A.; and Buck, E. M. 1981. Growth and survival of Clostridium perfringens in rare beef prepared in a water bath./ Food Prot. 44: 9–14.Google Scholar
  225. Smith, J. L.; Benedict, R. C.; Haas, M.; and Palumbo, S. A. 1983. Heat injury in Staphylococcus aureus 196 E: Protection by metabolizable and non-metabolizable sugars and polyols. Appi. Environ. Microbiol. 46: 1417–1419.Google Scholar
  226. Smith, J. L.; Benedict, R. C.; and Palumbo, S. A. 1982. Protection against heat-injury in Staphylococcus aureus by solutes. J. Food Prot. 45: 54–58.Google Scholar
  227. Smith, T., and Tung, M. A. 1982. Comparison of formula methods for calculating thermal process lethality. J. Food Sci. 47: 626–630.Google Scholar
  228. Sommer, N. E, and Mitchell, E. G. 1986. Gamma irradiation-A quarantine treatment for fresh fruits and vegetables? HortScience 21: 356–360.Google Scholar
  229. Spinak, S. H., and Wiley, R. C. 1982. Comparisons of the general and Ball formula methods for retort pouch process calculations. J. Food Sci. 47: 880–884.Google Scholar
  230. Splittstoesser, D. E; Leasor, S. B.; and Swanson, K. M. J. 1986. Effect of food composition on the heat resistance of yeast ascospores. J Food Sci. 51: 1265–1267.Google Scholar
  231. Stannard, C. J.; Abbiss, J. S.; and Wood, J. M. 1985. Efficiency of treatments involving ultraviolet irradiation for decontaminating packaging board of different surface compositions. J. Food Prot. 48: 786–789.Google Scholar
  232. Star, E. G. 1980. Mutagenic and cytotoxic effect of ethylene oxide on human cell cultures. Zbl. Bakt. Hyg., I. Abt. Orig. B170: 548–556.Google Scholar
  233. Stermer, R. A.; Lasater-Smith, M.; and Brasington, C. F. 1987. Ultra violet radiation-An effective bactericide for fresh meat. J. Food Prot. 50: 108–111.Google Scholar
  234. Stersky, A.; Heldman, D. R.; and Hedrick, T. I. 1970. The effect of a bipolar-oriented electrical field on microorganisms in air. J. Milk Food Technol. 33: 545–549.Google Scholar
  235. Sullivan, R.; Fassolitis, A. C.; Larkin, E. P.; Read, R. B., Jr.; and Peeler, J. T. 1971a. Inactivation of thirty viruses by gamma radiation. Appl. Microbiol. 22: 61–65.Google Scholar
  236. Sullivan, R.; Marnell, R. M.; Larkin, E. P.; and Read, R. B., Jr. 1975. Inactivation of polio-virus 1 and coxsackievirus B-2 in broiled hamburgers. J. Milk Food Technol. 38: 473475.Google Scholar
  237. Sullivan, R.; Scarpino, P. V.; Fassolitis, A. C.; Larkin, E. P.; and Peeler, J. T. 1973. Gamma radiation inactivation of coxsackievirus B-2. Appl. Microbiol. 26: 14–17.Google Scholar
  238. Sullivan, R.; Tierney, J. T.; Larkin, E. P.; Read, R. B., Jr.; and Peeler, J. T. 19716. Thermal resistance of certain oncogenic viruses suspended in milk and milk products. Appi. Microbiol. 22: 315–320.Google Scholar
  239. Sutherland, J. C. 1977. Photophysics and photochemistry of photoreactivation. Photochem. Photobiol. 25: 435–440.Google Scholar
  240. Swientek, R. J. 1985. Food irradiation update. Food Proc. 46(6): 82–86, 88–90.Google Scholar
  241. Takahashi, P. K.; Toups, H. J.; Greenberg, D. B.; Dimopoullos, G. T.; and Rusoff, L. L.Google Scholar
  242. 1975.
    Irradiation of Escherichia coli in the visible spectrum with a tunable orange-dye laser energy source. Appl. Microbiol. 29: 63–67.Google Scholar
  243. Tamminga, S. K.; Beumer, R. R.; and Kampelmacher, E. H. 1982. Microbiological studies on hamburgers. J. Hyg. Camb. 88: 125–142.Google Scholar
  244. Tandon, S., and Bhowmik, S. R. 1986. Evaluation of thermal processing of retortable pouches filled with conduction heated foods considering their actual shapes. J. Food Sci. 51: 709–714.Google Scholar
  245. Tarkowski, J. A.; Beumer, R. R.; and Kampelmacher, E. H. 1984. Low gamma irradiation of raw meat. II. Bacteriological effects on samples from butcheries. Intl Food Microbiol. 1: 25–31.Google Scholar
  246. Tarkowski, J. A.; Stoffer, S. C. C.; Beumer, R. R.; and Kampelmacher, E. H. 1984. Low dose gamma irradiation of raw meat. I. Bacteriological and sensory quality effects in artificially contaminated samples. Int. J. Food Microbial. 1: 13–23.Google Scholar
  247. Teixeira, A. A., and Manson, J. E. 1983. Thermal process control for aseptic processing systems. Food Technol. 37 (4): 128–133.Google Scholar
  248. Thayer, D. W.; Christopher, J. P.; Campbell, L. A.: Ronning, D. C.: Dahlgren, R. R.; Thomson, G. M.; and Wierbicki, E. 1987. Toxicology studies of irradiation-sterilized chicken./ Food Prot. 50: 278–288.Google Scholar
  249. Thomas, E C.; Ouwerkerk, T.; and McKercher, P. 1982. Inactivation by gamma irradiation of animal viruses in simulated laboratory effluent. Appi. Environ. Microbiol. 43: 1051–1056.Google Scholar
  250. Thompson, P. J. 1981. Thermophilic organisms involved in food spoilage: Aciduric flat-sour sporeforming aerobes. J. Food Prot. 44: 154–156.Google Scholar
  251. Torreggiani, D., and Toledo, R. T. 1986. Influence of sugars on heat inactivation, injury and repair of Saccharomyces cerevisiae. J. Food Sci. 51: 211–215.Google Scholar
  252. Tressler, D. K.; Van Arsdel, W. B.; and Copley, M.J. 1968. The Freezing Preservation of Foods. Vol. 3. Commercial Food Freezing Operations-Fresh Foods. Westport, Conn.: AVI Publishing Co.Google Scholar
  253. Tsuchido, T.; Katsui, N.; Takeuchi, A.; Takano, M.; and Shibasaki, I. 1985. Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment. Appi. Environ. Microbiol. 50: 298–303.Google Scholar
  254. Tsuji, K. 1983. Low-dose cobalt 60 irradiation for reduction of microbial contamination in raw materials for animal health products. Food Technol. 37(2): 48–52, 54.Google Scholar
  255. Tulis, J. J.; Fogarty, M. G.; and Sliger, J. L. 1973. Thermoradiation as a sterilization method. Develop. Ind. Microbiol. 14: 49–56.Google Scholar
  256. Tuveson, R. W., and March, M. E. 1980. Photodynamic and sunlight inactivation ofEscherichia coli strains differing in near-UV sensitivity and recombination proficiency. Photochem. Photobiol. 31: 287–289.Google Scholar
  257. Tyrrell, R. M. 1976. Synergistic lethal action of ultraviolet-violet radiations and mild heat in Escherichia coli. Photochem. Photobiol. 24: 345–351.Google Scholar
  258. USDA. 1969. Egg Pasteurization Manual. Publication No. ARS 74–48. Albany, Calif.: U.S. Department of Agriculture.Google Scholar
  259. USDA. 1984. Guidelines for Aseptic Processing and Packaging Systems in Meat and Poultry Plants. Meat and Poultry Inspection Technical Services, Food Safety and Inspection Service, Washington, D.C.: U.S. Department of Agriculture.Google Scholar
  260. Utkhede, R. S., and Rahe, J. E. 1982. Reduction in white rot incidence by seed irradiation in Allium cepa. Plant Dis. 66: 723–725.Google Scholar
  261. Van Dyck, P. J.; Tobback, P.; Feys, M.; and van de Voorde, H. 1982. Sensitivity of aflatoxin B1 to ionizing radiation. Appl. Environ. Microbiol. 43: 1317–1319.Google Scholar
  262. Venugopal, V.; Ghadi, S. V.; Ghosh, S. K.; Alur, M. D.; Doke, S. N.; and Lewis, N. F. 1982. Stability of radurized Indian mackerel (Rastrelliger kanagurta) as a function of temperature. J. Food Prot. 45: 360–362.Google Scholar
  263. Verrips, T., and van Rhee, R. 1983. Effects of egg yolk and salt on Micrococcaceae heat resistance. Appl. Environ. Microbiol. 45: 1–5.Google Scholar
  264. Vinicombe, D. A.; Moss, S. H.; and Davies, D.J. G. 1978. Photo-reactivation of -y-radiation damage in Escherichia coli as evidence for the nature of the oxygen-enhancement effect. Int. J. Radiat. Biol. 33: 483–492.Google Scholar
  265. von Bockelmann, B. A. H., and von Bockelmann, I. L. I. 1986. Aseptic packaging of liquid food products: A literature review. J. Agr. Food Chem. 34: 384–392.Google Scholar
  266. Walker, G. C., and Harmon, L. G. 1966. Thermal resistance of Staphylococcus aureus in milk, whey, and phosphate buffer. Appi. Microbiol. 14: 584–590.Google Scholar
  267. Wang, U.; Lee, C.; Chang, J.; and Yet, C. 1983. Gamma-radiation effects on Taiwan-produced rice-grains. Agr. Biol. Chem. 47: 461–472.Google Scholar
  268. Ward, D. R.; Pierson, M. D.; and Minnick, M. S. 1984. Determination of equivalent processes for the pasteurization of crabmeat in cans and flexible pouches. J. Food Sci. 49: 1003–1004, 1017.Google Scholar
  269. Ward, D. R.; Pierson, M. D.; and Van Tassell, K. R. 1977. The microflora of unpasteurized and pasteurized crabmeat. J. Food Sci. 42: 597–600, 614.Google Scholar
  270. Webb, R. B., and Brown, M. S. 1976. Sensitivity of strains of Escherichia coli differing in repair capability to far UV, near UV and visible radiations. Photochem. Photobiol. 24: 425–432.Google Scholar
  271. Welch, A. B., and Maxcy, R. B. 1975. Characterization of radiation-resistant vegetative bacteria in beef. Appi. Microbiol. 30: 242–250.Google Scholar
  272. Wesley, F.; Rourke, B.; and Darbishire, O. 1965. The formation of persistent toxic chlorohydrins in foodstuffs by fumigation with ethylene oxide and propylene oxide./ Food Sci. 30: 1037–1042.Google Scholar
  273. White, J. D. 1977. Standard aeration for gas-sterilized plastics./ Hyg. Camb. 79: 225–232.Google Scholar
  274. Wierbicki, E., and Heiligman, F. 1973. Shelf stable cured ham with low nitrite-nitrate additions preserved by radappertization. International Symposium “Nitrite in Meat Products.” Zeist, The Netherlands, September 11–14.Google Scholar
  275. Williams, D. C.; Lim, M. H.; Chen, A. O.; Pangborn, R. M.; and Whitaker, J. R. 1986. Blanching of vegetables for freezing-Which indicator enzyme to choose. Food Technol. 40 (6): 130–140.Google Scholar
  276. Winarno, F. G., and Stumbo, C. R. 1971. Mode of action of ethylene oxide on spores of Clostridium botulinum 62A. J. Food Sci. 36: 892–895.Google Scholar
  277. Xezones, H.; Segmiller, J. L.; and Hutchings, I. J. 1965. Processing requirements for a heat-tolerant anaerobe. Food Technol. 19: 1001–1002.Google Scholar
  278. Young, K. E., and Steffe, J. F. 1985. Predicting product lethality in hydrostatic retorts./ Food Sci. 50: 1467–1472.Google Scholar
  279. Zall, R.; Chen, J.; and Fields, S. C. 1986. Evaluation of automated time temperature monitoring system in measuring freshness of UHT milk. Dairy Food Sanit. 6: 285–290.Google Scholar
  280. Zimmermann, W. J. 1983. Evaluation of microwave cooking procedures and ovens for devitalizing trichinae in pork roasts./ Food Sci. 48: 856–860, 899.Google Scholar

Copyright information

© Van Nostrand Reinhold 1989

Authors and Affiliations

  • George J. Banwart
    • 1
  1. 1.Department of MicrobiologyThe Ohio State UniversityUSA

Personalised recommendations