Integrated Models of Forested Regions

  • S. T. A. Pickett
  • I. C. Burke
  • V. H. Dale
  • J. R. Gosz
  • R. G. Lee
  • S. W. Pacala
  • M. Shachak


This chapter presents the results of a discussion among physical, ecological and social scientists, to evaluate how and why forested regions should be the subject of integrated regional models (IRM). We present an overview of large landscapes that are actually or potentially forested as subjects for integrated regional models. By integrated, we mean models that deal with interactions among social, physical and ecological aspects of a system. We extend the scope of the topic somewhat from forests in the narrow sense to include areas where climatic change or human development can generate a woodland or savanna physiognomy. The interactions of climate, human actions and native ecological potential, which underlie such a gradient, suggest some of the utility of integrated regional models for understanding the structure and function of forested regions under changes in climate and land use.


Integrate Model Landscape Pattern Forested Region Urban Region Metropolitan Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. M., and R. W. Haynes. 1980. The 1980 timber assessment market model: structure, projections, and policy simulations. Forest Science 26: 1–64.Google Scholar
  2. Allen, T. F. H., and T. B. Starr. 1982. Hierarchy: Perspectives for Ecological Complexity. University of Chicago Press, Chicago, IL.Google Scholar
  3. Bierregard, R. O., T. E. Lovejoy, V. Kapos, A. A. dos Santos, and R. W. Hutchings. 1992. The biological dynamics of tropical rainforest fragments. BioScience 42: 859–866.Google Scholar
  4. Boume, L. S., and J. W. Simmons. 1982. Defining the area of interest: definition of the city, metropolitan areas and extended urban regions. In L. S. Bourne (ed.). Internal Structure of the City. Oxford University Press, New York, pp. 57–72.Google Scholar
  5. Boyden, S. V. 1977. Integrated ecological studies of human settlements. Impacts of Science on Society 27: 159–169.Google Scholar
  6. Boyden, S. V., and S. Millar. 1978. Human ecology and the quality of life. Urban Ecology 3: 263–287.CrossRefGoogle Scholar
  7. Brown, L. R. 1993. State of the World: 1993. W. W. Norton, New York.Google Scholar
  8. Dale, V. H. 1994. Terrestrial CO2 flux: the challenge of interdisciplinary research. In V. H. Dale (ed.). Effects of Land Use Change on Atmospheric CO 2 Concentrations: Southeast Asia as a Case Study. Springer-Verlag, New York, pp. 1–14.CrossRefGoogle Scholar
  9. Dale, V. H., and T. W. Doyle. 1987. The role of stand history in assessing forest impacts. Environmental Management 11: 351–357.CrossRefGoogle Scholar
  10. Dale, V. H., and R. H. Gardner. 1987. Assessing regional impacts of forest growth declines using a forest succession model. Journal of Environmental Management 24: 83–93.Google Scholar
  11. Dale, V. H., R. V. O’Neill, and F. Southworth. 1993a. Simulating land use change in central Rondonia, Brazil. Photogrammetric Engineering and Remote Sensing 59: 997–1005.Google Scholar
  12. Dale, V. H., F. Southworth, R. V. O’Neill, A. Rose, and R. Frohn. 1993b. Simulating spatial patterns of land-use change in central Rondonia, Brazil. In R. H. Gardner (ed.). Some Mathematical Questions in Biology. American Mathematical Society. Providence, RI, pp. 29–56.Google Scholar
  13. Dickinson, R. E. 1966. The process of urbanization. In F. F. Darling and J. P. Milton (eds.). Future Environments of North America. Natural History Press, Garden City, NY, pp. 463–478.Google Scholar
  14. Emanuel, W. R., H. H. Shugart, and M. P. Stevensen. 1985. Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climate Change 7: 29–43.CrossRefGoogle Scholar
  15. Evanari, M., L. Shanan, and N. Tadmor. 1982. The Negev: Challenge of a Desert, 2nd ed. Harvard University Press, Cambridge, MA.Google Scholar
  16. Firey, W. 1960. Man, Mind and Land: Theory of Resource Use. The Free Press, Glencoe, IL.Google Scholar
  17. Forman, R. T. T., and M. Godron. 1986. Landscape Ecology. John Wiley & Sons, New York.Google Scholar
  18. Franklin, J. F. 1993. Preserving biodiversity: species ecosystems, or landscapes. Ecological Applications 3: 202–205.CrossRefGoogle Scholar
  19. Frey, H. T. 1984. Expansion of Urban Areas in the United States: 1960–1980. USDA Economic Research Staff Report No. AGE5830615. Washington, D.C.Google Scholar
  20. Gardner, R. H., A. W. King, and V. H. Dale. 1993. Interactions between forest harvesting, landscape heterogeneity, and species persistence. In D.C. Le Master and R. A. Sedjo, (eds.). Modeling Sustainable Forest Ecosystems. Washington, DC, November, 1992.Google Scholar
  21. Gillis, A. M. 1992. Israeli researchers planning for global climate change on the local level. BioScience 42: 587–589.Google Scholar
  22. Harris, L. D. 1984. The Fragmented Forest: Island Biogeography Theory and the Preservation of Biodiversity. University of Chicago Press, Chicago, IL.Google Scholar
  23. Houghton, R. A., J. E. Hobbie, J. M. Melillo, B. Moore, B. J. Peterson, G. R. Shaver, and G. M. Woodwell. 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: net release of CO, to the atmosphere. Ecological Monographs 53: 235–262.CrossRefGoogle Scholar
  24. King, A. W., R. V. O’Neill, and D. L. DeAngelis. 1989. Using ecosystem models to predict regional CO2 exchange between the atmosphere and the terrestrial biosphere. Global Biogeochemical Cycles 3: 337–361.CrossRefGoogle Scholar
  25. Kolasa, J., and S. T. A. Pickett (ed.). 1991. Ecological Heterogeneity. Springer-Verlag, New York.Google Scholar
  26. Lee, R. G., R. Flamm, M. G. Turner, C. Bledsoe, P. Chandler, C. DeFarrari, R. Gottfried, R. J. Naiman, N. Schumaker, and D. Wear. 1992. Integrating sustainable development and environmental vitality: a landscape ecology approach. In R. J. Naiman (ed.). Watershed Management: Balancing Sustainability and Environmental Change. Springer-Verlag, New York, pp. 499–521.Google Scholar
  27. Levins, R. 1966. The strategy of model building in population biology. American Scientist 54: 421–431.Google Scholar
  28. McDonnell, M. J., and S. T. A. Pickett. 1990. Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology 71: 1232–1237.CrossRefGoogle Scholar
  29. McDonnell, M. J., and S. T. A. Pickett. (ed.). 1993. Humans as Components of Ecosystems: The Ecology of Subtle Human Effects and Populated Areas. Springer-Verlag, New York.Google Scholar
  30. Mills, J. R., and J. C. Kincaid. 1992. The Aggregate Timberland Assessment System Atlas: A Comprehensive Timber Projection Model. General technical report PNWGTR-281. USDA Forest Service, Pacific Northwest Research Station, Portland, OR.Google Scholar
  31. Olson, J. S., R. M. Garrels, R. A. Berner, T. V. Armentano, M. I. Dyer, and D. H. Yaalon. 1985. The natural carbon cycle. In J. R. Trabalka (ed.). Atmospheric Carbon Dioxide and the Global Carbon Cycle. Volume DOE/ER-0239. U.S. Department of Energy, Washington, DC, pp. 175–214.Google Scholar
  32. Parks, P. J. 1992. Models of forested and agricultural landscapes: Integrating economics. In M. G. Turner and R. H. Gardner (eds.). Quantitative Methods in Landscape Ecology. Springer-Verlag, New York, pp. 309–322.Google Scholar
  33. Pastor, J., and W. M. Post. 1988. Response of northern forests to CO2 induced climate change. Nature 334: 55–58.CrossRefGoogle Scholar
  34. Post, W. M., T.-H. Peng, W. Emanuel, A. W. King, V. H. Dale, and D. L. DeAngelis. 1990. The global carbon cycle. American Scientist 78: 310–326.Google Scholar
  35. Rapoport, E. H. 1993. The process of plant colonization in small settlements and large cities. In M. J. McDonnell and S. T. A. Pickett (ed.). Humans as Components of Ecosystems: The Ecology of Subtle Human Effects and Populated Areas. Springer-Verlag, New York, pp. 190–207.Google Scholar
  36. Reid, W. V., and K. R. Miller. 1989. Keeping Options Alive: The Scientific Basic for Conserving Biodiversity. World Resources Institute, Washington, DC.Google Scholar
  37. Repetto, R. 1988. The Forest for the Trees? Government Policies and the Misuse of Forest Resources. World Resources Institute, Washington, DC.CrossRefGoogle Scholar
  38. Running, S. W., and J. C. Coughlan. 1988. A general model of forest ecosystem processes for regional applications. I. Hydrologic balances, canopy gas exchange, and primary production processes. Ecological Modelling 42: 125–154.CrossRefGoogle Scholar
  39. Shachak, M., B. Boeken, J. Cepeda-Pizarro, J. Gutierrez-Camus, J. Wrann, S. Benedetti, W. Canto, and G. Soto. 1992. Savannization, an Ecological Answer to Desertification: A Proposal for a Savannization Project in Chile. Proceedings of the Savannization Workshop at the Universidad de la Sirena, Chile, November 1992.Google Scholar
  40. Shugart, H. H. 1984. A Theory of Forest Dynamics: The Ecological Implications of Forest Succession Models. Springer-Verlag, New York.Google Scholar
  41. Shugart, H. H. 1992. Global models of change based on species and/or functional groups. Annual Review of Ecology and Systematics 23: 15–38.Google Scholar
  42. Shukla, J., C. Nobre, and P. Sellers. 1990. Amazon deforestation and climate change. Science 247: 1322–1325.PubMedCrossRefGoogle Scholar
  43. Solomon, A. 1986. Transient response of forests to CO2-induced climate change: simulation modeling experiments in eastern North America. Decologia 68: 567–579.Google Scholar
  44. Southworth, F., V. H. Dale, and R. V. O’Neill. 1991. Contrasting patterns of land use in Rondonia, Brazil: simulating the effects on carbon release. International Social Sciences Journal 130: 681–698.Google Scholar
  45. Stearns, F., and T. Montag. 1974. The Urban Ecosystem: A Holistic Approach. Dowden, Hutchinson, and Ross, Stroudsburg, PA.Google Scholar
  46. Turner, M. G. 1987. Spatial simulation of landscape changes in Georgia: a comparison of three transition models. Landscape Ecology 1: 29–36.CrossRefGoogle Scholar
  47. Turner, M. G. 1989. Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics 20: 171–197.CrossRefGoogle Scholar
  48. Williams, M. 1990. Agricultural impacts in temperate lands. In M. Williams (ed.). Wetlands: A Threatened Landscape. Blackwell, Oxford, pp. 181–206.Google Scholar
  49. World Bank. 1991. The Forest Sector. The World Bank, Washington, DC.Google Scholar
  50. World Resources Institute. 1992. World Resources 1992–1993. Oxford University Press, New York.Google Scholar
  51. Yair, A., and M. Shachak. 1987. Studies in watershed ecology of an arid area. In L. Berkofsky and M. G. Wurtele (eds.). Progress in Desert Research. Rowman and Littlefield, Totawa, NJ, pp. 145–193.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. T. A. Pickett
  • I. C. Burke
  • V. H. Dale
  • J. R. Gosz
  • R. G. Lee
  • S. W. Pacala
  • M. Shachak

There are no affiliations available

Personalised recommendations