Advertisement

The Study of Ozone Climatology and Pollution in the Northeastern and Southern United States Using Regional Air Quality Models

  • William L. Chameides

Abstract

Photochemical smog and its attendant high concentrations of ozone pollution were first identified as an environmental problem in Los Angeles in the 1950s (Haagen-Smith, 1952). (Ironically, while ozone in the stratosphere is believed to protect living organisms from harmful ultraviolet radiation, ozone at the earth’s surface is generally thought of as a pollutant because this strongly oxidizing gas can damage living tissue by direct contact.) Today, in spite of extensive research and, in some cases, large expenditures of funds for pollution abatement, photochemical smog is not only a serious problem in Los Angeles, but in virtually every major urban center in the world. In addition to being an urban problem, there is growing evidence that photochemical smog poses a threat to ecosystems in many rural areas. This threat appears to be especially chronic in the northeastern and southern United States, where a warm, stagnant summertime climatology combines with ample emissions of natural hydrocarbons and anthropogenic nitrogen oxides to produce high concentrations of ozone throughout the region during the summer months. In this chapter, a review is presented of the ozone pollution problem in the northeastern and southern United States and the use of regional air quality models to simulate the development of this pollution and ultimately develop control strategies for its abatement.

Keywords

Ozone Concentration Photochemical Smog High Ozone Concentration Ozone Pollution Urban Plume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. M., J. D. Glyer, S. L. Johnson, and B. A. McCarl. 1989. A reassessment of the economic effects of ozone on U.S. agriculture. Journal of the Air Pollution Control Association 39: 960–968.Google Scholar
  2. Carter, W. P. L., F. M. Lurmann, R. Atkinson, and A. C. Lloyd. 1986. Development and Testing of a Surrogate Species Chemical Reaction Mechanism. EPA/600/3–86031. U.S. Environmental Protection Agency, Research Triangle Park, NC.Google Scholar
  3. Chameides, W. L., R. W. Lindsey, J. Richardson, and C. S. Kiang. 1988. The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science. 95: 18569–18576.Google Scholar
  4. Chameides, W. L., F. Fehsenfeld, M. O. Rodgers, C. Cardelino, J. Martinez, D. Parrish, W. Lonneman, D. R. Lawson, R. A. Rasmussen, P. Zimmerman, J. Greenberg, P. Middleton, and T. Wang. 1992. Ozone precursor relationships in the ancient atmosphere. Journal of Geophysical Research 97: 6037–6055.CrossRefGoogle Scholar
  5. Chang, J. S., R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W. R. Stockwell, and C. J. Walcek. 1987. A three-dimensional Eulerian acid deposition model: Physical concepts and formulation. Journal of Geophysical Research 92: 14681–14700.CrossRefGoogle Scholar
  6. Charmichael, G. R., and L. K. Peters. 1984. An eulerian transport/transformation/removal model for SO, and sulfate-I. Model development. Atmos. Environ. 18: 937–952.CrossRefGoogle Scholar
  7. Chen, W. Y., 1989. Estimate of dynamic predictability from NMC DERF Experiments. Monthly Weather Review 117: 1227–1236.CrossRefGoogle Scholar
  8. Derwent, R. G. 1989. A comparison of model photochemical ozone formation potential with observed regional ozone formation during a photochemical episode over the United Kingdom in April 1987. Atmos. Environ. 23: 1361–1371.CrossRefGoogle Scholar
  9. Dickerson, R. R., G. J. Huffman, W. T. Luke, L. J. Nunnermacker, K. E. Pickering, A. C. D. Leslie, C. G. Lindsey, W. G. N. Slinn, T. J. Kelly, P. H. Daum, A. C. Delaney, J. P. Greenberg, P. R. Zimmerman, J. F. Boatman, J. D. Ray, and D. H. Stedman. 1987. Thunderstorms: An important mechanism in the transport of air pollutants. Science 235: 460–465.PubMedCrossRefGoogle Scholar
  10. Dodge, M. C. 1989. A comparison of three photochemical oxidant mechanisms. Journal of Geophysical Research 94: 5121–5136.CrossRefGoogle Scholar
  11. EPA, 1991. National Air Quality and Emissions Trends Report, 1990.0.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, EPA–450/4–91–023.Google Scholar
  12. Gery, M. W., G. Z. Whitten, J. P. Killus, and M. C. Dodge. 1989. A photochemical kinetics mechanism for urban and regional scale computer modelling. Journal of Geophysical Research 94: 12925–12956.CrossRefGoogle Scholar
  13. Haagen-Surit, A. J. 1952. Chemistry and physiology of Los Angeles smog. Indust. Eng. Chem. 44: 1342–1346.CrossRefGoogle Scholar
  14. Heck, W. W., O. C. Taylor, R. Adams, G. Bingham, J. Miller, E. Preston, and L. Weinstein. 1982. Assessment of crop losses from ozone. Journal of the Air Pollution Control Association 32: 353–361.CrossRefGoogle Scholar
  15. Hov, O., E. Hesstvedt, and I. S. A. Isaksen. 1978. Long-range transport of tropospheric ozone. Nature. 273: 341–344.CrossRefGoogle Scholar
  16. Jenkins, and J. J. Ephraums, eds. Intergovernmental Panel on Climate Change, Cambridge University Press, NY.Google Scholar
  17. Isaksen, I. S. A., O. Hov, and E. Hesstvedt. 1978. Ozone generation over rural areas. Environmental Science and Technology 12: 1279–1284.CrossRefGoogle Scholar
  18. Korshover, J. 1976. Climatology of Stagnating Anticyclones East of the Rocky Mountains, 1936–1975. NOAA Technical Memorandum ERL ARL-55, Air Resources Laboratory, Landover, MD.Google Scholar
  19. Lamb, B., A. Guenther, D. Gay, and H. Westberg. 1987. A national inventory of biogenic hydrocarbon emissions. Atmos. Env. 21: 1695–1705.CrossRefGoogle Scholar
  20. LeFohn, A. S., and J. E. Pinkerton. 1988. High resolution characterization of ozone data for sites located in forested areas of the United States. Journal of the Air Pollution Control Association 38: 1504–1511.Google Scholar
  21. Lippmann, M. 1989. Health effects of ozone: A critical review. Journal of the Air Pollution Control Association 39: 672–695.Google Scholar
  22. Logan, J. A. 1989. Ozone in rural areas of the United States. Journal of Geophysical Research 94: 8511–8532.CrossRefGoogle Scholar
  23. Lurmann, F. W., A. C. Lloyd, and R. Atkinson. 1986. A chemical mechanism for use in long-range transport/acid deposition computer modeling. Journal of Geophysical Research 91: 10905–10936.CrossRefGoogle Scholar
  24. McKeen, S. A., E.-Y. Hsie, M. Trainer, R. Tallamraju, and S. C. Liu. 1991. A regional model study of the ozone budget in the eastern United States. Journal of Geophysical Research 96: 10809–10846.CrossRefGoogle Scholar
  25. Middleton, P., J. S. Chang, J. C. Del Corral, H. Geiss, and J. M. Rosinski. 1988. Comparison of RADM and OSCAR precipitation chemistry data. Atmos. Environ. 22: 1195–1208.CrossRefGoogle Scholar
  26. NAS. 1991. Rethinking the Ozone Problem in Urban and Regional Air Pollution. Authored by J. H. Seinfeld, R. Atkinson, R. I. Berglund, W. L. Chameides, W. R. Cotton, K. I. Demerjian, J. C. Elston, F. Fehsenfeld, B. J. Finalyson-Pitts, R. C. Harriss, C. E. Kolb, Jr., P. J. Lioy, J. A. Logan, M. J. Prather, A. Russell, and B. Steigerwald. National Academy Press, Washington, DC.Google Scholar
  27. Rao, S. T., G. Sistla, J. Y. Ku, K. Schere, and J. Godowitch. 1989. Nested Grid Modelling Approach for Assessing Urban Ozone Air Quality. Paper 89–42A.2. Presented at 82nd Annual Meeting and Exhibition of Air and Waste Management Association, Anaheim, CA, June 25–30.Google Scholar
  28. Runeckles, V. C. 1992. Uptake of ozone by vegetation. In A. S. Lefohn (ed.). Surface Level Ozone Exposures and Their Effects on Vegetation. Lewis Publishers Inc., Chelsea, MA, pp. 157–188.Google Scholar
  29. Samson, P. J., and B. Shi. 1988. A Meterological Investigation of High Ozone Values in American Cities. Report prepared for the United States Congress, Office of Technology Assessment. U.S. Government Printing Office, Washington, DC.Google Scholar
  30. Schere, K., and E. Wayland. 1989. EPA Regional Oxidant Model (ROM 2.0). Evaluation on 1980 NEROS Data Bases. EPA-600/S3–89/057. U.S. Environmental Protection Agency, Research Triangle Park, NC.Google Scholar
  31. Seinfeld, J. H. 1988. Ozone air quality models: A critical review. J. Air Pollut. Control Assoc. 38: 616–645.Google Scholar
  32. Seinfeld, J. H. 1989. Urban air pollution: State of science. Science. 243: 745–753.PubMedCrossRefGoogle Scholar
  33. Sillman, S., J. A. Logan, and S. C. Wofsy. 1990. A regional scale model for ozone in the United States with subgrid representation of urban and power plant plumes. Journal of Geophysical Research 95: 5731–5748.CrossRefGoogle Scholar
  34. Stockwell, W. R., P. Middleton, and J. S. Chang. 1990. The RADM2 chemical mechanism for regional air quality modeling. Journal of Geophysical Research 95: 16343–16367.CrossRefGoogle Scholar
  35. Tesche, T. W. 1988. Accuracy of ozone air quality models. Journal of Environmental Engineering 114: 739–752.CrossRefGoogle Scholar
  36. Trainer, M., E. T. Williams, D. D. Parrish, M. P. Buhr, E. J. Allwine, H. H. Westberg, F. C. Fehsenfeld, and S. C. Liu. 1987. Models and observations of the impact of natural hydrocarbons in rural ozone. Nature: 329: 705–707.CrossRefGoogle Scholar
  37. van den Dool, H. M., and S. Saha. 1990. Frequency dependence in forecast skill. Monthly Weather Review 118: 128–137.CrossRefGoogle Scholar
  38. Venketram, A., P. K. Karamchandani, and P. K. Misra. 1988. Testing a comprehensive acid deposition model. Atmos. Environ. 22: 737–747.CrossRefGoogle Scholar
  39. Volz, A., and D. Kley. 1988. Evaluation of the Montsouris series of ozone measurements in the nineteenth century. Nature 332: 240–242.CrossRefGoogle Scholar
  40. Vukovich, F. M., J. Fishman, and E. V. Browell, 1985. The reservoir of ozone in the boundary layer of the eastern United States and its potential impact on the global tropospheric ozone budget. Journal of Geophysical Research 90: 5687–5698.CrossRefGoogle Scholar
  41. Zimmerman, P. R. 1979. Determination of Emission Rates of Hydrocarbons from Indigenous Species of Vegetation in the Tampa/St. Petersburg, Florida Area. EPA 904/977–028. U.S. Environmental Protection Agency, Atlanta, GA.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • William L. Chameides

There are no affiliations available

Personalised recommendations