Interactions of Landuse and Ecosystem Structure and Function: A Case Study in the Central Great Plains

  • Ingrid C. Burke
  • William K. Lauenroth
  • William J. Parton
  • C. Vernon Cole


Spatial pattern in ecological phenomena has been an important impetus for ideas about controls over ecosystem processes. Many of the significant theories about ecosystem function have been based on observation of landscape-scale pattern (Bormann and Likens, 1979; Watt, 1947), chrono-sequences (Whittaker, 1953; 1973), or geographic scale pattern (Burke et al., 1989; Jenny, 1930; McArthur, 1972; Sala et al., 1988). Such observations play two important roles. First, generalizations about large-scale, steady-state patterns provide hypotheses about mechanisms that control ecosystem function which can be tested at small scales and over short time intervals and can be used to generate mechanistic models. Second, such observations provide mathematical/statistical relationships that can be applied to predict future conditions under scenarios in which the controls change. An example is the Holdridge approach to predicting vegetation using climate-change scenarios (Emanuel et al., 1985; Holdridge, 1947).


Soil Organic Matter Geographic Information System Soil Organic Carbon Soil Carbon Ecosystem Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilar, R., E. F. Kelly, and R. D. Heil. 1988. Effects of cultivation on soils in northern Great Plains rangelands. Soil Science Society of America Journal 52: 1076–1081.CrossRefGoogle Scholar
  2. Anderson, J. R., E. E. Hardy, J. T. Roach, and R. E. Witmer. 1976. A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey Professional Paper 964.Google Scholar
  3. Borchert, J. R. 1950. The climate of the central North American grasslands. Annals of the Association of American Geographers 40: 1–39.Google Scholar
  4. Bormann, F. H., and G. E. Likens. 1979. Pattern and Process in a Forested Ecosystem. Springer-Verlag, New York.CrossRefGoogle Scholar
  5. Burke, I. C., C. M. Yonker, W. J. Parton, C. V. Cole, K. Flach, and D. S. Schimel. 1989. Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Science Society of America Journal 53: 800–805.CrossRefGoogle Scholar
  6. Burke, I. C., T. G. F. Kittel, W. K. Lauenroth, P. Snook, C. M. Yonker, and W. J. Parton. 1991. Regional analysis of the central Great Plains. BioScience 41: 685–692.Google Scholar
  7. Burton, I., R. W. Kates, and G. F. White. 1978. The Environment as Hazard. Oxford University Press, New York.Google Scholar
  8. Climatedata. 1988. U.S. West Optical Publishing, Denver, CO.Google Scholar
  9. Doran, J. W. 1980. Soil microbial and biochemical changes associated with reduced tillage. Soil Science Society of America Journal 44: 518–24.CrossRefGoogle Scholar
  10. Dregne, H. E., and W. O. Willis. 1983. Dryland Agriculture. American Society of Agronomy, Madison, WI.Google Scholar
  11. Elliott, E. T., and C. V. Cole. 1989. A perspective on agroecosystem science. Ecology 70: 1597–1602.CrossRefGoogle Scholar
  12. Emanuel, W. R., H. H. Shugart, and M. P. Stevenson. 1985. Climate change and the broad-scale distribution of terrestrial ecosystem complexes. Climate Change 7: 29–43.CrossRefGoogle Scholar
  13. Haas, H. J., C. E. Evans, and E. R. Miles. 1957. Nitrogen and carbon changes in soils as influenced by cropping and soil treatments. USDA Technical Bulletin 1164. U.S. Government Printing Office, Washington, DC.Google Scholar
  14. Hide, J. C., and W. H. Metzger. 1939. The effect of cultivation and erosion on the nitrogen and carbon of some Kansas soils. Agronomy Journal 31: 625–632.CrossRefGoogle Scholar
  15. Holland, E. A., and D. C. Coleman. 1987. Litter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology 68: 425–433.CrossRefGoogle Scholar
  16. Holdridge, L. R. 1947. Determination of world plant formations from simple climatic data. Science 105: 367–368.PubMedCrossRefGoogle Scholar
  17. Houghton, R. A. 1990. The future role of tropical forests in affecting the carbon dioxide concentration of the atmosphere. Ambio 19: 204–209.Google Scholar
  18. Houghton, R. A., R. D. Boone, J. M. Melillo, C. A. Palm, G. M. Woodwell, N. Myers, B. Moore, and D. L. Skole. 1987. Net flux of CO2 from tropical forests in 1980. Nature 316: 617–620.CrossRefGoogle Scholar
  19. Jenkinson, D. S. 1977. Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from 14-C labelled rye grass decomposing under field conditions. Journal of Soil Science 28: 424–494.CrossRefGoogle Scholar
  20. Jenny, H. 1930. A study on the influence of climate upon the nitrogen and organic matter content of the soil. Montana Experiment Station Bulletin 152.Google Scholar
  21. Jenny, H. 1980. The Soil Resource. Springer-Verlag, New York.CrossRefGoogle Scholar
  22. Kansas State Board of Agriculture. 1990. Kansas Farm Facts. Kansas Agricultural Statistics and USDA National Agricultural Statistics Service, Topeka, KS.Google Scholar
  23. Klecka, N. 1985. Discriminant Analysis. Sage Publications, Newbury Park, N.J.Google Scholar
  24. Loveland, T. R., J. W. Merchant, D. O., Ohlen, and J. F. Brown. 1991. Development of a land-cover characteristics database for the conterminous U.S. Photogrammetric Engineering and Remote Sensing 57: 1453–1463.Google Scholar
  25. Lowenthal, D. 1961. Geography, experience, and imagination: towards a geographical epistemology. Annals of the Association of American Geographers 51: 241–260.CrossRefGoogle Scholar
  26. Lowenthal, D. 1972. The nature of perceived and imagined environments. Environment and Behavior 4: 189–207.CrossRefGoogle Scholar
  27. McArthur, R. H. 1972. Geographical Ecology. Harper and Row, New York.Google Scholar
  28. Metherill, A. 1992. Application of an ecosystem simulation model to cropping systems in the Central Great Plains. Dissertation, Colorado State University.Google Scholar
  29. Meyer, W. B., and B. L. Turner II. 1992. Human population growth and global landuse/cover change. Annual Reviews 23: 39–61.Google Scholar
  30. Muhs, D. R. 1985. Age and paleoclimatic significance of Holocene sand dunes in northeastern Colorado. Annuals of the Association of American Geographers 75: 566–582.CrossRefGoogle Scholar
  31. Parton, W. J., D. J. Schimel, C. V. Cole, and D. S. Ojima. 1987. Analysis of factors controlling soil organic matter levels on grasslands. Soil Science Society of America Journal 51: 1173–1179.CrossRefGoogle Scholar
  32. Paul, E. A. 1984. Dynamics of organic matter in soils. Plant and Soil 76: 275–285.CrossRefGoogle Scholar
  33. Pielke, R. A., and R. Avissar. 1990. Influence of landscape structure on local and regional climate. Landscape Ecology 4: 133–155.CrossRefGoogle Scholar
  34. Post, W. M., T. H. Peng, W. R. Emanuel, A. W. King, V. H. Dale, and D. L. DeAngelis. 1990. The global carbon cycle. American Scientist 78: 310–326.Google Scholar
  35. Riebsame, W. E., K. A. Galvin, R. Young, W. J. Parton, I. C. Burke, L. Bohren, and E. Knop. 1994. An integrated model of causes and responses to environmental change. BioScience. In press.Google Scholar
  36. Sala, O. E., W. J. Parton, L. Joyce, and W. K. Lauenroth. 1988. Primary production of the central grassland region of the United States. Ecology 69: 40–45.CrossRefGoogle Scholar
  37. SAS Institute, Inc. 1988. SAS/STAT User’s Guide, Release 6.03 ed. SAS Institute, Inc. Cary, NC.Google Scholar
  38. Schlesinger, W. H. 1990. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348: 232–234.CrossRefGoogle Scholar
  39. Sorenson, L. H. 1981. Carbon-nitrogen relationships during the humification of cellulose in soils containing different amounts of clay. Soil Biology and Biochemistry 13: 313–321CrossRefGoogle Scholar
  40. Stern, P. C., O. R. Young, and D. Druckman (eds.). 1992. Global Environmental Change. Understanding the Human Dimensions. National Academy Press, Washington, D.C.Google Scholar
  41. Tiessen, H., J. W. B. Stewart, and J. R. Bettany. 1982. Cultivation effects on the amounts and concentrations of carbon, nitrogen, and phosphorus in grassland soils. Agronomy Journal 74: 831–875.CrossRefGoogle Scholar
  42. USDI U.S. Geological Survey. 1986. Land use and land cover digital data from 1:250,000 and 1:100,000 scale maps. National Mapping Program Technical Instructions, Data Users Guide 4, Reston, VA.Google Scholar
  43. USDA Soil Conservation Service. 1989. STATSGO Soil Maps. National Cartographic Center, Fort Worth, TX.Google Scholar
  44. Watt, A. S. 1947. Pattern and process in the plant community. J. Ecology 35: 1–22.CrossRefGoogle Scholar
  45. Whittaker, R. H. 1953. A consideration of climax theory: the climax as a population and pattern. Ecological Monographs 23: 41–78.CrossRefGoogle Scholar
  46. Whittaker, R. H. 1973. Climax concepts and recognition. Handbook of Vegetation Science 8: 137–154.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Ingrid C. Burke
  • William K. Lauenroth
  • William J. Parton
  • C. Vernon Cole

There are no affiliations available

Personalised recommendations