An Overview of Biological Models: A Physical Scientist’s Perspective

  • Bruce P. Hayden


In this chapter, I serve as a commentator outside the field or as a gadfly for models developed by ecosystem scientists. My area of interest is the atmospheric sciences. In my view, there are important historical parallels in modeling in the two disciplines. My comparison of these penultimate ecosystem and weather and climate models focuses on common attributes: system heterogeneity, scale, simple structure, memory, succession, state change, and chaos. In order to prevent my Don Quixote tendencies from running rampant, I have reread A. M. Turing’s sobering warning about his own model published in his 1952 Philosophical Transactions paper:

This model will be a simplification and an idealization, and consequently a falsification. It is to be hoped that the features retained for discussion are those of greatest importance in the present state of knowledge.


Soil Organic Carbon Leaf Area Index Biological Model Lorenz Attractor Observational Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, T. F. H., and J. F. Koonce. 1973. Multivariate approaches to algal stratagems and tactics in systems analysis of phytoplankton. Ecology 54: 1234–1246.CrossRefGoogle Scholar
  2. Antonovsky, M. Y., R. A. Fleming, and Y. A. Kuznestov. 1987. The response of the balsam fir forst to a spruce budworm invasion: A simple dynamical model. WP-8707n1, IIASA.Google Scholar
  3. Bergeron, T. 1930. Richtlinien einer dynamischen Klimatologie. Met. Zeit. 47: 246–262.Google Scholar
  4. Bonan, G. B. 1989. A computer model of the solar radiation, soil moisture, and soil thermal regimes in boreal forests. Ecological Modelling 45: 275–306.CrossRefGoogle Scholar
  5. Bonan, G. B. 1991. Atmosphere-biosphere exchange of carbon dioxide in boreal forests. Journal of Geophysical Research 96 (DA): 7301–7312.CrossRefGoogle Scholar
  6. Bonan, G. B. 1992. Effects of boreal forest vegetation on global climate. Nature 359: 716–718.CrossRefGoogle Scholar
  7. Bryson, R. A. (1992). A macrophysical model of the Holocene intertropical convergence and jetstream position and rainfall for the Saharan region. Meteorological and Atmospheric Physics 47: 247–258.CrossRefGoogle Scholar
  8. Burke, I. C., Yonker, W. J. Parton, C. V. Cole, K. Flach, and D. S. Schimel. 1989. Texture, climate and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Science Society of America Journal 53: 800–805.CrossRefGoogle Scholar
  9. Burke, I. C., T. G. F. Kittel, W. K. Lauenroth, P. Snook, C. M. Yonker, and W. J. Parton. 1991. Regional analysis of the central Great Plains. Bioscience 41: 685–692.Google Scholar
  10. Costanza, R., F. H. Sklar, and M. L. White. 1990. Modeling coastal landscape dynamics. Bioscience 40: 91–107.Google Scholar
  11. Dickinson, R. E., R. M. Errico, F. Giorgi, and G. T. Bates. 1989. A regional climate model for the western United States. Climate Change 15: 383–422.Google Scholar
  12. Essenwanger, O. 1954. Neue Methoden der Zerlegung von Haufigkeits-verteilungen. Ber. dtsch. Wetterdienst U.S. Zone (Bad Kissingen) No. 10.Google Scholar
  13. Facelli, J. M., and S. T. A. Pickett. 1990. Markovian chains and the role of history in succession. Trends in Ecology and Evolution 5: 27–30.PubMedCrossRefGoogle Scholar
  14. Feynman, R. P. 1985. QED: The Strange Theory of Light and Matter. Princeton University Press, Princeton, NJ.Google Scholar
  15. Giorgi, F. and L. O. Mearns. 1991. Approaches to the simulation of regional climate change-a review. Reviews of Geophysics 29: 191–216.CrossRefGoogle Scholar
  16. Greenwood, D. J., and A. Walker. 1990. Modeling soil productivity and pollution. Phil. Trans. R. Soc. Lond. B 329: 309–320.CrossRefGoogle Scholar
  17. Hesselberg, T. 1932. Arbeitsmethoden einer dynamishcen Klimatologie. Beitr. Phys. Atmos. 19: 291–305.Google Scholar
  18. Hubbell, S. O., and R. B. Foster. 1986. Biology, chance, history and the structure of tropical rain forest tree communities. In J. Diamond and T. J. Case (eds.) Community Ecology. Harper & Row, New York, pp. 314–330.Google Scholar
  19. Huston, M., D. DeAngelis, and W. Post. 1988. New computer models unify ecological theory. Bioscience 38: 682–691.Google Scholar
  20. Kutzbach, G. 1979. The Thermal Theory of Cyclones. American Meteorological Society, Boston, MA.Google Scholar
  21. Lorenz, E. N. 1975. Nondeterministic theories of climatic change. Quaternary Research 6: 495–506.CrossRefGoogle Scholar
  22. Lorenz, E. N. 1984. Irregularity: a fundamental property of the atmosphere. Tellus 36A: 98–110.Google Scholar
  23. Namias, J. 1972. Experiments in objectively predicting some atmospheric and oceanic variables for the winter of 1971–1972. Journal of Applied Meteorology 11: 1164–1174.CrossRefGoogle Scholar
  24. Odum, H. T. 1956. Efficiencies, size of organisms and community structure. Ecology 37: 592–597.CrossRefGoogle Scholar
  25. O’Neil, R. V., and B. Rust. 1979. Aggregation error in ecological models. Ecological Modeling 7: 91–105.CrossRefGoogle Scholar
  26. Oort, H. H. 1970. The energy cycle of the earth. Scientific American 223: 54–63.CrossRefGoogle Scholar
  27. Parton, W. J., D. S. Schimel, C. V. Cole, and D. S. Ojima. 1987. Analysis of factors controlling soil organic matter levels in great plains grasslands USA. Soil Science Society of America Journal 51: 1173–1179.CrossRefGoogle Scholar
  28. Pastor, J., and W. M. Post. 1986. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry 2: 3–27.CrossRefGoogle Scholar
  29. Pastor, J., and W. M. Post. 1988. Response of northern forests to carbon dioxide induced climate change. Nature 334: 55–58.CrossRefGoogle Scholar
  30. Polya, G. (1945). How to Solve It: A New Aspect of Mathematical Method. Princeton University Press.Google Scholar
  31. Rizzo, B., and E. Wiken. 1992. Assessing the sensitivity of Canada’s ecosystems to climate change. Climate Change 21: 37–55.CrossRefGoogle Scholar
  32. Running, S. W. 1988. A general model of forest ecosystem processes for regional applications. I. Hydrological balance, canopy gas exchange and primary production processes. Ecological Modelling 42: 125–154.CrossRefGoogle Scholar
  33. Running, S. W. 1992. A bottom-up evolution of terrestrial ecosystem modeling theory, and ideas toward global vegetation modeling. In D. S. Ojima (ed.). Modeling the Earth System. UCAR/Office for Interdisciplinary Earth Sciences, Denver, Co. pp. 263–280.Google Scholar
  34. Running, S. W. 1991. Computer simulation of regional evapotranspiration by integrating landscape biophysical attributes with satellite data. In T.J. Schmugge and Jean-Claude Andre (eds.). Land Surface Evaporation, Springer Verlag, NY, pp. 359–369.CrossRefGoogle Scholar
  35. Running, S. W., R. R. Nemani, D. L. Peterson, L. E. Band, D. F. Potts, L. L. Pierce, and M. A. Spanner. 1989. Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology 70: 1090–1101.CrossRefGoogle Scholar
  36. Schimel, D. S., T. G. F. Kittel, and W. J. Parton. 1991. Terrestrial biogeochemical cycles global interactions with the atmosphere and hydrology. Tellus Series A 43A-B: 188–203.Google Scholar
  37. Schimel, D. S., W. J. Parton, T. G. F. Kittel, D. S. Ojima, and C. V. Cole. 1990. Grassland biogeochemistry links to atmospheric processes. Climate Change 17: 13–26.CrossRefGoogle Scholar
  38. Shugart, H. H., Jr., and D. C. West. 1981. Long term dynamics of forest ecosystems. American Scientist 69: 647–652.Google Scholar
  39. Sklar, F. H., R. Costanza, and J. W. Day. 1985. Dynamic spatial simulation modeling of coastal wetland habitat succession. Ecological Modelling 29: 261–281.CrossRefGoogle Scholar
  40. Tucker, C. J., I. Y. Fung, C. D. Keeling, and R. H. Gammon. 1986. Relationship between atmospheric carbon dioxide variations and a satellite-derived vegetation index. Nature 319: 195–199.CrossRefGoogle Scholar
  41. Turing, A. M. (1952). The chemical basis of morphogenesis. Philos. Trans. Royal Soc., London, Ser. B 237: 37–72CrossRefGoogle Scholar
  42. Urban, D. L., R. V. O’Neill, and H. H. Shugart. 1987. Landscape ecology: A hierarchical perspective can help scientists understand spatial patterns. BioScience 37: 119–127.Google Scholar
  43. Whitaker, R. H. 1969. Evolution of diversity in plant communities. In Diversity and Stability in Ecological Systems. Brookhaven Symposium on Biology. 22.Google Scholar
  44. Williamson, P. 1992. Global Change: Reducing Uncertainties. IGBP, Stockholm, Sweden.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Bruce P. Hayden

There are no affiliations available

Personalised recommendations