Dispersion Models of Microbial Bioaerosols

  • Bruce Lighthart


Many bioaerosol models have been prepared ranging from compartment models (Forrester, 1961; Atkins, 1969), describing the downwind concentrations and flux (i.e., D/P transfer rate where D/P is a droplet/particle; D/P/M−2 s−1) of bioaerosols from a source that contributes to the loading of the bulk atmosphere (Fig. 9.1) through comprehensive, theoretical, and multiple regression models characterizing the factors that affect the survival of airborne microbes (Larson, 1973) [Eq. (9.1)].


Wind Speed Droplet Size Mycoplasma Pneumoniae Spray Nozzle Airborne Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkins, G. L. 1969. Multicompartment models for biological systems. Methuen & Co. Ltd., London, p. 153.Google Scholar
  2. Bausum, H. T., S. A. Schaub, M. J. Small, J. A. Highfill, and C. A. Sorber. 1976. Bacterial aerosols resulting from spray irrigation with wastewater. Technical Report 7602. U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, MD.Google Scholar
  3. Berendt, R. F., E. L. Dorsey, and H. J. Hearn. 1972. Viricidal properties of light and SO,. I. Effect of aerosolized Venezuelan equine encephalomyelitis virus. Proc. Soc. Exp. Biol. Med. 130:1–5.Google Scholar
  4. Briggs, W. K. W. 1969. “Plume rise.” U.S. A.E.C., Technical Information Division-25075, Dept. of Communications, Springfield, VA.Google Scholar
  5. Cox, C. S. 1987. The aerobiological pathway of microorganisms. John Wiley & Sons, New York, NY.Google Scholar
  6. Cox, C. S., and L. J. Goldberg. 1972. Aerosol survival of Pasteurella tularensis and the influence of relative humidity. Appl. Microbiol. 23(1):1–3.PubMedGoogle Scholar
  7. Dallavalle, J. M. 1948. Micromeritics. The technology of fine particles. Pitman Publishing Corp., New York.Google Scholar
  8. Ehrlich, R., and S. Miller. 1973. Survival of airborne Pasteurella tularensis at different atmospheric temperatures. Appl. Microbiol. 25(3):369–372.PubMedGoogle Scholar
  9. Ferry, R. M., W. F. Brown, and E. B. Damon. 1958. Studies on the loss of viability of stored bacteria aerosols. II. Death rates of several non-pathogenic organisms in relation to biological and structural characteristics. J. Hyg. 56:125–150.CrossRefGoogle Scholar
  10. Forrester, J. W. 1961. Industrial dynamics. M.I.T. Press, Cambridge, MA.Google Scholar
  11. Goldberg, L. J., H. M. S. Watkins, E. E. Boerke, and M. A. Chatigny. 1958. The use of a rotating drum for the study of aerosols over extended periods of time. Amer. J. Hyg. 68:85–93.PubMedGoogle Scholar
  12. Graham, D. C., C. E. Quinn, I. A. Sells, and M. D. Harrison. 1979. Survival of strains of Soft Rot Coliform bacteria on microthreads exposed in the laboratory and in the open air. J. Appl. Bacteriol. 46:367–376.CrossRefGoogle Scholar
  13. Hanna, S. R., G. A. Briggs, and R. P. Hosker, Jr. (eds.). 1982. Handbook on atmospheric diffusion. P102. DOE/TIC-11223. Technical Information Center, Department of Energy, Washington, DC.Google Scholar
  14. Hinds, W. C. 1982. Aerosol Technology. John Wiley & Sons, New York, p. 424.Google Scholar
  15. Larson, E. W. 1973. Environmental variables and microbial survival. Pp. 81–86. In J. F. Ph. Hers and K. C. Winkler (eds.), Airborne transmission and airborne infection. Oosthoek Publishing Co., Utrecht, The Netherlands.Google Scholar
  16. Lighthart, B. 1973. Survival of airborne bacteria in a high urban concentration of carbon monoxide. Appl. Environ. Microbiol. 25(1):86–91.Google Scholar
  17. Lighthart, B. 1989. A statistical model of laboratory death rate measurements for airborne bacteria. Aerobiology 5:138–144.CrossRefGoogle Scholar
  18. Lighthart, B., and A. S. Frisch, 1976. Estimation of viable airborne microbes downwind from a point source. Appl. Environ. Microbiol. 31(5):700–704.PubMedGoogle Scholar
  19. Lighthart, B., V. E. Hiatt, and A. T. Rossano Jr. 1971. The survival of airborne Serratia marscensens in urban concentration of sulfur dioxide. Air Pollut. Control Assoc. 21(10):639–642.Google Scholar
  20. Lighthart, B., and J. Kim. 1989. Simulation of airborne microbial droplet transport. Appl. Environ. Microbiol. 55(9):2349–2355.PubMedGoogle Scholar
  21. Lighthart, B., and A. J. Mohr. 1987. Estimating downwind concentrations of viable airborne microorganisms in dynamic atmospheric conditions. Appl. Environ. Microbiol. 53(7):1580–1583.PubMedGoogle Scholar
  22. Lighthart, B., B. T. Shaffer, B. Marthi, and L. Ganio. 1991. Trajectory of aerosol droplets from a sprayed bacterial suspension. Appl. Environ. Microbiol. 57(4):1006–1012.PubMedGoogle Scholar
  23. Lindow, S. E., G. R. Knudsen, R. J. Seidler, M. V. Walter, V. W. Lambou, P. S. Amy, D. Schmedding, V. Prince, and S. Hern. 1988. Aerial dispersal and epiphytic survival of Pseudomonas syringae during a pretest for the release of genetically engineered strains into the environment. Appl. Environ. Microbiol. 54:1557–1563.PubMedGoogle Scholar
  24. Mohr, A. J. 1984. Doctoral dissertation. Utah State University.Google Scholar
  25. Logan, UT, Pasquill, F. 1974. Atmospheric diffusion, 2nd. ed. John Wiley & Sons, New York.Google Scholar
  26. Peterson, E. W., and B. Lighthart. 1977. Estimation of downwind viable airborne microbes from a wet cooling tower-Including settling. Microbial Ecol. 4:67–79.CrossRefGoogle Scholar
  27. Poon, C.P.C. 1966. Studies on the instantaneous death of airborne Escherichia coli. Amer. J. Epidemiol. 84:1–9.Google Scholar
  28. Poon, C.P.C. 1968. Viability of long-storaged airborne bacterial aerosols. J. Sanitary Eng. Div., Proc. Amer. Soc. Civil Eng. SA6:1137–1146.Google Scholar
  29. Shaw, D. T. 1978. Fundamentals of aerosol science. John Wiley & Sons, New York.Google Scholar
  30. Smith, M. 1968. Recommended guide for the prediction of the dispersion of airborne effluents. American Society of Mechanical Engineering, New York.Google Scholar
  31. van Dop, H., F. T. M. Nieuwstadt, and J. C. R. Hunt. 1985. Random walk models for particle displacements in inhomogeneous unsteady turbulent flows. Phys. Fluids 28:1639–1653.CrossRefGoogle Scholar
  32. Webb, S. J. 1959. Factors affecting the viability of air-borne bacteria. I. Bacteria aerosolized from distilled water. Can. J. Microbiol. 5:649–669.CrossRefGoogle Scholar
  33. Webb, S. J. 1960. Factors affecting the viability of air-borne bacteria. III. The role of bonded water and protein structure in the death of air-borne cells. Can. J. Microbiol. 6:89–105.PubMedCrossRefGoogle Scholar
  34. Webb, S. J. 1961a. Factors affecting its E viability of air-borne bacteria. IV. The inactivation & reactivation of airbonding Serratia marcuscans by ultraviolet & visable light. Can. J. Microbiol. 7:607–619.CrossRefGoogle Scholar
  35. Webb, S. J. 1961b. Factor affector the viability of air-bonding bacteria V. The effect of dessication on some metabolic systems of Escherichia coli. Can. J. Microbiol. 7:621–631.CrossRefGoogle Scholar
  36. Wright, D. N., and G. D. Bailey. 1969. Effect of relative humidity on the stability of Mycoplasma pneumoniae exposed to simulated solar ultraviolet and to visible radiation. Can. J. Microbiol. 15:1449–1452.PubMedCrossRefGoogle Scholar
  37. Wright, D. N., G. D. Bailey, and L. J. Goldberg. 1969. Effect of temperature on survival of airborne Mycoplasma pneumoniae. J. Bacteriol. 99(2):491–495.PubMedGoogle Scholar
  38. Wright, D. N., G. D. Bailey, and M. T. Hatch. 1968. Survival of airborne Mycoplasma as affected by relative humidity. J. Bacteriol. 95(1):251–252.PubMedGoogle Scholar

Copyright information

© Chapman & Hall, Inc. 1994

Authors and Affiliations

  • Bruce Lighthart

There are no affiliations available

Personalised recommendations