Instrumentation Used with Microbial Bioaerosols

  • Paul A. Jensen
  • B. Lighthart
  • A. J. Mohr
  • Brenda T. Shaffer


Bioaerosol monitoring is a rapidly emerging area of industrial hygiene that is finding increased use and overuse. It is often used in conjunction with indoor environment quality investigations, infectious disease outbreaks, and agricultural health investigations. Bioaerosol monitoring includes the measurement of viable (culturable and nonculturable) and nonviable microorganisms in both indoor (e.g., industrial, office, or residential) and outdoor (agricultural and general air quality) environments. In general, indoor bioaerosol sampling need not be performed if visible growth is observed. Contamination (microbial growth on floors, walls, or ceilings, or in the HVAC system) should be remediated. If personnel remain symptomatic after remediation, air sampling may be appropriate, keeping in mind that negative results are quite possible and they should be interpreted with caution. Other exceptions for which bioaerosol sampling may be appropriate include epidemiological investigations, research studies, or if indicated after consultation with an occupational physician and an immunologist.


Mass Median Aerodynamic Diameter Airborne Bacterium Welding Fume Governmental Industrial Hygienist Thermophilic Actinomycete 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, K. F., and H. A. Hyde. 1965. Pollen grains and fungal spores indoors and out at Cardiff. J. Polynol. 1: 67.Google Scholar
  2. Amner, W., C. Edwards and A. J. McCarthy. 1989. Improved medium for recovery and enumeration of the farmer’s lung organism, Saccharomonospora viridis. Appl. Environ. Microbiol. 55 (10): 2669–2774.PubMedGoogle Scholar
  3. Amy, P. S., D. L. Haldemann, D. Ringelberg, D. H. Hall, and C. Russell 1992. Comparison of identification systems for classification of bacteria isolated from water and endolithic habitats within the deep subsurface. Appl. Environ. Microbiol. 58 (10): 3367–3373.PubMedGoogle Scholar
  4. Andersen, A. A. 1958. New sampler for the collection, sizing, and enumeration of viable airborne particles. J. Bacteriol. 76: 471–484.PubMedGoogle Scholar
  5. Andersen Instruments, Inc. 1984. Operating manual for Andersen Samplers, Inc. viable (microbial) particle sizing samplers. Andersen Instruments, Inc., Atlanta, GA.Google Scholar
  6. APHA. 1989. Standard methods for the examination of water and waste water, 17th ed. American Public Health Association, Washington, D.C.Google Scholar
  7. Asgharian, B., and O. R. Moss. 1992. Particle suspension in a rotating drum chamber when the influence of gravity and rotation are both significant. Aerosol. Sci. Tech. 17 (4): 263–277.CrossRefGoogle Scholar
  8. Banaszak, E. F., W. H. Thiede, and J. N. Fink. 1970. Hypersensitivity pneumonitis due to contamination of an air conditioner. New Engl. J. Med. 283 (6): 271–276.Google Scholar
  9. Baines, W. D., and E. G. Peterson. 1951. Investigation of flow through screens. Trans. ASME 7, 467–480.Google Scholar
  10. Baron, E. J. and S. M. Finegold. 1990. Bailey & Scott’s diagnostic microbiology, 8th ed. The C. V. Mosby Company, St. Louis, MO.Google Scholar
  11. Biermann, A. H., and W. Bergman. 1988. Filter penetration measurements using a condensation nuclei counter and an aerosol photometer. J. Aerosol Sci. 19 (4): 471–483.CrossRefGoogle Scholar
  12. BIOTEST-Serum-Institut GmbH. n.d. The Biotest RCS centrifugal air sampler. BIOTEST-Serum-Institut GmbH, Frankfurt.Google Scholar
  13. Block, S. S. ed. 1991. Disinfection, sterilization, and preservation, 4th ed. Lea and Febiger, Philadelphia, PA.Google Scholar
  14. Brisson-Noel A., D. Lecossier, X. Nassif, B. Gicquel, V. Levy-Frebault, and A. J. Hance. 1989. Rapid diagnosis of tuberculosis by amplification of mycobacterial DNA in clinical samples. Lancet 2 (8671): 1069–1071.PubMedCrossRefGoogle Scholar
  15. Buckland, F. E., and R. Tyrrell. 1964. Loss of infectivity on drying various viruses. Nature 195: 1063–1064.CrossRefGoogle Scholar
  16. Burge, H. A., J. C. Feeley, K. Kreiss, D. Milton, P. R. Morey, J. A. Otten, K. Peterson, J. J. Tulis, and R. Tyndall. 1989. Guidelines for the assessment of bioaerosols in the indoor environment. American Conference of Governmental Industrial Hygienists, Cincinnati: OH.Google Scholar
  17. Burge, H. P., J. R. Boise, J. A. Rutherford, and W. R. Solomon. 1977. Comparative recoveries of airborne fungus spores by viable and non-viable modes of volumetric collection. Mycopatholgia 61 (1): 27–33.CrossRefGoogle Scholar
  18. Cannon, W. C., E. F. Blanton, and K.E. McDonald. 1983. The flow-past chamber: an improved nose-only exposure system for rodents. Amer. Ind. Hyg. Assoc. 44 (12): 923–928.Google Scholar
  19. Carpenter, T. E., and D. L. Brenchley. 1972. A piezoelectric cascade impactor for aerosol monitoring. Amer. Ind. Hyg. Assoc. J. 33 (8): 503–510.Google Scholar
  20. CDC/NIH. 1993. Biosafety in microbiological and biomedical laboratories, 3rd ed. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, and National Institutes of Health, Washington, D.C. HHS (CDC) Publication No. 93–8395.Google Scholar
  21. Coons, A. H., H. J. Creech, and R. N. Jones. 1941. Immunological properties of an antigen containing a fluorescent group. Proc. Soc. Exp. Biol. Med. 47: 200–205.Google Scholar
  22. Coons, A. H., H. J. Creech, R. N. Jones, and E. Berliner. 1942. The demonstration of pneumococcal antigen in tissues by use of fluorescent antibody. J. Immunol. 45: 159–165.Google Scholar
  23. Cown, W. B., T. W. Kethley, and E. L. Fincher. 1957. The critical-orifice liquid impinger as a sampler for bacterial aerosols. Appl. Microbiol. 5: 119–124.PubMedGoogle Scholar
  24. Cox, C. S. 1968. The aerosol survival of Escherichia coli B in nitrogen, argon and helium atmospheres and the influence of relative humidity. J. Gen. Microbiol. 50 (1): 139–147.PubMedGoogle Scholar
  25. Cox, C. S. 1970. Aerosol survival of Escherichia coli B disseminated from the dry state. Appl. Microbiol. 19 (4): 604–607.PubMedGoogle Scholar
  26. Cox, C. S. 1971. Aerosol survival of Pasteurella tularensis disseminated from the wet and dry states. Appl. Microbiol. 21 (3): 482–486.PubMedGoogle Scholar
  27. Cox, C. S. 1987. The aerobiological pathway of microorganisms. John Wiley & Sons Ltd., Chichester.Google Scholar
  28. Crowe, J. H., J. F. Carpenter, L. M. Crowe, and T. J. Anchordoguy. 1990. Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology 27: 219–231.CrossRefGoogle Scholar
  29. Crowe, J. H., L. M. Crowe, and F. A. Hoekstra. 1989a. Phase transitions and permeability changes in dry membranes during rehydration. J. Bioenerg. Biomemb. 21 (1): 77–91.CrossRefGoogle Scholar
  30. Crowe, J. H., F. A. Hoekstra, and L. M. Crowe. 1989b. Membrane phase transitions are responsible for imbibitional damage in dry pollen. Proc. Nat. Acad. Sci. USA 86: 520–523.Google Scholar
  31. Crowe, J. H., F. A. Hoekstra, and L. M. Crowe. 1992. Anhydrobiosis. Annu. Rev. Physiol. 54: 579–599.PubMedCrossRefGoogle Scholar
  32. Dennis, P. J. L. 1990. An unnecessary risk: Legionnaires’ disease. In P. R. Morey, J. C. Feeley, and J. A. Otten (eds.), Biological contaminants in indoor environments. American Society for Testing Materials, Philadelphia, PA: pp. 84–98.CrossRefGoogle Scholar
  33. DIFCO Laboratories. 1984. DIFCO manual: Dehydrated culture media and reagents for microbiology. DIFCO Laboratories, Inc., Detroit, MI.Google Scholar
  34. Dimmick, R. L. 1961. A light-scatter probe for aerosol studies. Amer. Ind. Hyg. Assoc. J. 22 (1): 80–82.Google Scholar
  35. Dimmick, R. L., and A. B. Akers. 1969. An introduction to experimental aerobiology. Wiley-Interscience, New York.Google Scholar
  36. Dimmick, R. L., and L. Wang. 1969. Rotating drum. Pp. 164–176. In An Introduction to experimental aerobiology. Wiley-Interscience, New York.Google Scholar
  37. Donham, K. J., L. J. Scallon, W. Popendorf, M. W. Treuhaft, and R. C. Roberts. 1986. Characterization of dusts collected from swine confinement buildings. Amer. Ind. Hyg. Assoc. J. 47 (7): 404–410.Google Scholar
  38. Druett, H. A. 1969. A mobile form of the Henderson apparatus. J. Hyg. Camb. 67: 437–448.CrossRefGoogle Scholar
  39. Eduard, W., J. Lacey, K. Karlsson, U. Palmgren, G. Strom, and G. Blomquist. 1990. Evaluation of methods for enumerating microorganisms in filter samples from highly contaminated occupational environments. Amer. Ind. Hyg. Assoc. J. 51 (8): 427–436.Google Scholar
  40. Eisenach, K. D., M. D. Cave, J. H. Bates, and J. T. Crawford. 1991. Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J. Infect. Dis. 161: 977–981.CrossRefGoogle Scholar
  41. Ernstberger, H. G., R. B. Gall, and C. W. Turok. 1988. Experiments supporting the use of ambient aerosols for quantitative respirator fit testing. Amer. Ind. Hyg. Assoc. J. 49 (12): 613–619.CrossRefGoogle Scholar
  42. Faber, H. K., R. J. Silverberg, and L. Dong. 1944. Poliomyelitis in the cynomolgus monkey. J. Exp. Med. 80: 39–57.PubMedCrossRefGoogle Scholar
  43. Fairchild, C. I., and L. D. Wheat. 1984. Calibration and evaluation of a real-time cascade impactor. Amer. Ind. Hyg. Assoc. J. 45 (4): 205–211.Google Scholar
  44. Fields, N., G. Oxborrow, J. Puleo, and C. Herring. 1974. Evaluation of membrane filter field monitors for microbiological air sampling. Appl. Microbiol. 27 (3): 517–520.PubMedGoogle Scholar
  45. Garvey, J. S., N. E. Cremer, and D. H. Sussdorf. 1977. Methods in immunology. 3rd ed. W. A. Benjamin, Inc., Reading, MA, pp. 301–312.Google Scholar
  46. Gherna, R., P. Pienta, and R. Cote (eds.). 1992. Catalogue of bacteria and phages, 18th ed. American Type Culture Collection. Rockville, MD. [Catalogs of other protists and cell lines available upon request.]Google Scholar
  47. Glinsmann, P. W., and F. S. Rosenthal. 1985. Evaluation of an aerosol photometer for monitoring welding fume levels in a shipyard. Amer. Ind. Hyg. Assoc. J. 46 (7): 391–395.CrossRefGoogle Scholar
  48. Goldberg, L. J. 1971. Naval Biomedical Research Laboratory, programmed environment, aerosol facility. Appl. Microbiol. 21 (2): 244–252.Google Scholar
  49. Goldberg, L. J., H.M.S. Watkins; E. E. Boerke, and M. A. Chatigny. 1958. The use of a rotating drum for the study of aerosol over extended periods of time. Am. J. Hyg. 68: 85–93.Google Scholar
  50. Goltz, S. P., J. J. Donegan, H.-L. Yang, M. Pollice, J. A. Todd, M. M. Molina, J. Victor, and N. Kelker. 1990. The use of nonradioactive DNA probes for rapid diagnosis of sexually transmitted bacterial infections. In A. J. L. Macario and E. C. de Macario (eds.), Gene probes for bacteria. San Diego, CA: Academic Press, Inc. pp. 1–44.Google Scholar
  51. Gressel, M. G., W. A. Heitbrink, and J. D. McGlothlin 1988. Advantages of real-time data acquisition for exposure assessment. Appl. Ind. Hyg. 3 (11): 316.CrossRefGoogle Scholar
  52. Gressel, M. G., W. A. Heitbrink, J. D. McGlothlin, and T. J. Fischbach. 1987. Real-time, integrated and ergonomic analysis of dust exposure during manual materials handling. Appl. Ind. Hyg. 2 (3): 108–113.CrossRefGoogle Scholar
  53. Gruel, R. L., C. R. Reid, and R. T. Alleman. 1987. The optimum rate of drum rotation for aerosol aging. J. Aerosol Sci. 18: 17–22.CrossRefGoogle Scholar
  54. Harper, G. J. 1963. The influence of environment on the survival of airborne virus particles in the laboratory. Arch. Gesamte. Virusforsh. 13: 64–71.CrossRefGoogle Scholar
  55. Heitbrink, W. A., P. A. Baron, and K. Willeke. 1991. Coincidence in time-of-flight aerosol spectrometers: Phantom particle creation. Aerosol Sci. Tech. 14 (1): 112–126.Google Scholar
  56. Henderson, P. W. 1952. An apparatus for the study of airborne infection. J. Hyg. Camb. 50: 52–68.Google Scholar
  57. Henningson, E. W., I. Fangmark, E. Larsson, and L. E. Wikstrom. 1988. Collection efficiency of liquid samplers for microbiological aerosols. J. Aerosol Sci. 19 (7): 911–914.CrossRefGoogle Scholar
  58. Hinds, W. C. 1982. Aerosol technology. John Wiley & Sons, New York, pp. 104–126, 379.Google Scholar
  59. Hocking, A. D., and J. L. Pitt. 1980. Dichloran-glycerol medium for enumeration of xerophilic fungi from low-moisture foods. Appl. Environ. Microbiol. 39 (3): 488–492.PubMedGoogle Scholar
  60. Hood, A. M. 1971. An indoor system for the study of biological aerosols in open air conditions. J. Hyg. Camb. 69 (4): 607–617.PubMedCrossRefGoogle Scholar
  61. Huebert, B. J., W. T. Luke, A. T. Delany, and R. A. Brost. 1988. Measurements of concentrations and dry surface fluxes of atmospheric nitrates in the presence of ammonia. J. Geophys. Res. 93 (D6): 7127–7136.CrossRefGoogle Scholar
  62. Hunter, C. A., C. Grant, B. Flannigan, and A. F. Bravery. 1988. Mould in buildings: The air spora of domestic dwellings. Int Biod 24 (2): 81–101.CrossRefGoogle Scholar
  63. Ibach, M. J., H. W. Larsh, and M. L. Furcolow. 1954. Isolation of Histoplasma capsulatum from the Air. Science 119: 17.CrossRefGoogle Scholar
  64. Israeli, E., B. T. Shaffer, J. A. Hoyt, B. Lighthart, and L. M. Ganio. 1993. Survival differences among freeze-dried genetically engineered and wild type bacteria. Appl. Environ. Microbiol. 59 (2): 594–598.PubMedGoogle Scholar
  65. Israeli, E., B. T. Shaffer, and B. Lighthart. 1992. Survival and enumeration of aerosolized and freeze-dried genetically engineered E. coli under controlled environmental conditions. Mol. Ecol. (in review).Google Scholar
  66. Jacobs, R. R. 1989. Airborne endotoxins: An association with occupational lung disease. Appl. Ind. Hyg. 4 (2): 50–55.CrossRefGoogle Scholar
  67. Jensen, P. A., W. F. Todd, G. N. Davis, and P. V. Scarpino. 1992. Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria. Amer. Ind. Hyg. Assoc. J. 53 (10): 660–667.Google Scholar
  68. Johnston, A. M., J. H. Vincent, and A. D. Jones. 1985. Measurements of electric charge for workplace aerosols. Annu. Occup. Hyg. 29 (2): 271–284.CrossRefGoogle Scholar
  69. Jong, S. C., and M. J. Edwards (eds.). 1991. Catalogue of filamentous fungi. 18th ed. American Type Culture Collection, Rockville, MD. [Catalogs of other protists and cell lines available upon request.]Google Scholar
  70. Karlsson, K. and P. Malmberg. 1989. Characterization of exposure to molds and actinomycetes in agricultural dusts by scanning electron microscopy, fluorescence microscopy and the culture method. Scand. J. Work Environ. Health 15 (5): 353–359.PubMedCrossRefGoogle Scholar
  71. Koneman, E. W., S. D. Allen, A. R. Dowell, W. M. Janda, H. M. Sommers, and W. C. Winn. 1988. Color atlas and textbook of diagnostic microbiology, 3rd ed. J. B. Lippincott Company, Philadelphia, PA.Google Scholar
  72. Lacey, J., and B. Crook. 1988. Fungal and actinomycete spores as pollutants of the workplace and occupational allergens. Annu. Occup. Hyg. 15 (4): 515–533.CrossRefGoogle Scholar
  73. Lach, V. 1985. Performance of the surface air system air samplers. J. Hosp. Infect. 6 (1): 102–107.PubMedCrossRefGoogle Scholar
  74. Larson, E. W., H. W. Young, and J. S. Walker. 1976. Aerosol evaluations of the DeVilbiss no. 40 and Vaponefrin nebulizers. Appl. Microbiol. 31: 150–151.Google Scholar
  75. Lembke, L. L., R. N. Kniseley, R. C. V. Nostrand, and M. D. Hale. 1981. Precision of the All-Glass Impinger and the Andersen Microbial Impactor for air sampling in solid-waste handling facilities. Appl. Environ. Microbiol. 42 (2): 222–225.PubMedGoogle Scholar
  76. Lennette, E. H., A. Balows, W. J. Hausler, Jr., and H. J. Shadomy (eds.). 1985. Manual of clinical microbiology. 4th ed. American Society for Microbiology, Washington DC.Google Scholar
  77. Leong, K. H. 1986. On the continuous operation of the vibrating orifice aerosol generator. J. Aerosol Sci. 5: 855–858.CrossRefGoogle Scholar
  78. Leopold, S. S. 1988. “Positive hole” statistical adjustment for a two-stage, 200-hole-perstage Andersen air sampler. Amer. Ind. Hyg. Assoc. J. 49(2):A88–A90.Google Scholar
  79. Lighthart, B., and J. Kim. 1989. Simulation of airborne microbial droplet transport. Appl. Environ. Microbiol. 55 (9): 2349–2355.PubMedGoogle Scholar
  80. Lighthart, B., B. T. Schaffer, B. Marthi, and L. Ganio in press, 1993. Artificial wind puff liberation of microbial bioaerosols deposited on plants. Aerobiologia.Google Scholar
  81. Lighthart, B., B. T. Shaffer, B. Marthi, and L. Ganio. 1991. Trajectory of aerosol droplets from a sprayed bacterial suspension. Appl. Environ. Microbiol. 57 (4): 1006–1012.PubMedGoogle Scholar
  82. Lindemann, J., H. A. Constantinidou, W. R. Barchet, and C. D. Upper. 1982. Plants as sources of airborne bacteria, including ice nucleation-active bacteria. Appl. Environ. Microbiol. 44 (5): 1059–1063.PubMedGoogle Scholar
  83. Lippmann, M. 1989. Sampling aerosols by filtration. Pp. 305–336. In S. V. Hering, (ed.), Air sampling instruments for evaluation of atmospheric contaminants, 7th ed. American Conference of Governmental Industrial Hygienists, Cincinnati, OH.Google Scholar
  84. Liu, B. Y. H., R. N. Bergland, and J. K. Agarwal. 1974. Experimental studies of optical particle counters. Atmos. Environ. 8: 717–732.CrossRefGoogle Scholar
  85. Lundholm, I. M. 1982. Comparison of methods for quantitative determination of airborne bacteria and evaluation of total viable counts. Appl. Environ. Microbiol. 44(1): 179183.Google Scholar
  86. Macher, J. M. 1989. Positive-hole correction of multiple-jet impactors for collecting viable microorganisms. Amer. Ind. Hyg. Assoc. J. 50 (11): 561–568.Google Scholar
  87. Macher, J. M., and M. W. First. 1983. Reuter centrifugal air sampler: Measurement of effective airflow rate and collection efficiency. Appl. Environ. Microbiol. 45 (6): 1960–1962.PubMedGoogle Scholar
  88. Macher, J. M., and H. C. Hansson. 1987. Personal size-separating impactor for sampling microbiological aerosols. Amer. Ind. Hyg. Assoc. J. 48 (7): 652–655.Google Scholar
  89. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  90. Marthi, B. and B. Lighthart. 1990. Effects of betaine On enumeration of airborne bacteria. Appl. Environ. Microbiol. 56 (5): 1286–1289.PubMedGoogle Scholar
  91. May, K. R. 1973. The collison nebulizer: description, performance and application. Aerosol Sci. 4: 235–243.CrossRefGoogle Scholar
  92. McFeters, G. A., S. C. Cameron, and M. W. LeChellier. 1982. Influence of diluents, media and membrane filters on detection of injured waterborne coliform bacteria. Appl. Environ. Microbiol. 43 (1): 97–103.PubMedGoogle Scholar
  93. Miller, J. M., and D. L. Rhoden. 1991. Preliminary evaluation of Biolog, a carbon source utilization method for bacterial identification. J. Clin. Microbiol. 29 (6): 1143–1147.PubMedGoogle Scholar
  94. Milton, D. K., R. J. Gere, H. A. Feldman, and I. A. Greaves. 1990. Aerosol sampling and application of a new Limulus method. Amer. Ind. Hyg. Assoc. J. 51 (6): 331–337.Google Scholar
  95. Mitchell, J. P. 1984. The production of aerosols from aqueous solutions using the spinning top generator. J. Aerosol Sci. 1: 35–45.CrossRefGoogle Scholar
  96. Monroe, D. 1984. Enzyme immunoassay. Anal. Chem. 56: 920–931.Google Scholar
  97. Morey, P., J. Otten, H. Burge, M. Chatigny, J. Feeley, F. M. LaForce, and K. Peterson. 1986. Airborne viable microorganisms in office environments: Sampling protocol and analytical procedures. Appl. Ind. Hyg. 1: R19 - R23.Google Scholar
  98. Morring, K. L., W. G. Sorenson, and M. D. Attfield. 1983. Sampling for airborne fungi: A statistical comparison of media. Amer. Ind. Hyg. Assoc. J. 44 (9): 662–664.CrossRefGoogle Scholar
  99. Muilenberg, M. L., T. M. Sweet, and H. A. Burge. (1992). A comparison of methods of estimating bacterial levels in machining oil mists (Abstract #20). Unpublished paper presented at the Aerobiology 1992 Symposium of the Pan-American Aerobiology Association, Scarborough, Ontario, Canada, June 11, 1992.Google Scholar
  100. Nevalainen, A. 1989. Bacteria aerosols in indoor air. National Public Health Institute, Helsinki, Finland.Google Scholar
  101. National Institute for Occupational Safety and Health (NIOSH) 1987. NIOSH guide to industrial respiratory protection. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, Cincinnati, OH. DHHS (NIOSH) Publication No. 87–116.Google Scholar
  102. Olenchock, S. A., J. C. Mull, and W. G. Jones. 1983. Endotoxins in cotton: Washing effects and size distribution. Amer. J. Ind. Med. 4 (4): 515–521.CrossRefGoogle Scholar
  103. Otten, J. A., P. R. Morey, and H. A. Burge. 1986. Airborne microorganisms in office environments: Sampling protocol and analytical procedures. In Proceedings of the 1986 EPA/APCA Symposium on Measurement of Toxic Air Pollutants, EPA Report No. 600/9–86–013, pp. 36 – 44.Google Scholar
  104. Palmgren, U., G. Ström, G. Blomquist, and P. Malmberg. 1986. Collection of airborne microorganisms on nuclepore filters, estimation and analysis-CAMNEA method. J. Appl. Bacteriol. 61 (5): 401–406.PubMedCrossRefGoogle Scholar
  105. Phillips, W. 1990. Telephone conversation on June 21, 1990, between W. Phillips, Andersen Instruments, Inc., and P. Jensen, Division of Physical Sciences and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control, Public Health Service, U.S. Department of Health and Human Services.Google Scholar
  106. Pitt, J. L., A. D. Hocking, and D. R. Glenn. 1983. An improved medium for the detection of Aspergillus flavus and A. parasiticus. J. Appl. Bacteriol. 54 (1): 109–114.PubMedCrossRefGoogle Scholar
  107. Poon, C. P. C. 1966. Studies on the instantaneous death of airborne Escherichia coli. Amer. J. Epidemiol. 84 (1): 1–9.Google Scholar
  108. Poon, C. P. C. 1968. Viability of long-storaged airborne bacterial aerosols. J. Sanitary Eng. Div., Proc. Amer. Soc. Civil Eng. SA6: 1137–1146.Google Scholar
  109. Pramer, and M. Rogul (eds.), Engineered organisms in the environment: scientific issues. American Society for Microbiology, Washington, DC.Google Scholar
  110. Pui, D. Y. H., and B. Y. H. Liu. 1988. Advances in instrumentation for atmospheric aerosol measurement. Physica Scripta 37: 252–269.CrossRefGoogle Scholar
  111. Ramiarz, R. J., J. K. Agarwal, and E. M. Johnson. 1982. Improved polystyrene latex and vibrating orifice monodispersed aerosol generators. TSI Quart. 7 (3).Google Scholar
  112. Remiarz, R. J., J. K. Agarwal, F. R. Quant, and G. J. Sem. 1983. Real-time aerodynamic particle size analyzer. In V. A. Marple, and B. Y. H. Liu (eds). Aerosols in the mining and industrial work environments. Vol. 3. Ann Arbor Science Publishers, Ann Arbor, MI, pp. 879–895.Google Scholar
  113. Rosebury, T. 1947. Experimental air-borne infection, Williams and Wilkins, Baltimore.Google Scholar
  114. Rylander, R., and J. Vesterlund. 1982. Airborne endotoxins in various occupational environments. Proj. Clin. Biol. Res. 93: 399–409.Google Scholar
  115. Saiki, R. K., S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich, and N. Arnheim. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science,230(4732): l3501354.Google Scholar
  116. Salem, H. 1987. Principals of inhalation toxicology. Pp. 1–29. In H. Salem (ed.), Inhalation toxicology—research methods, applications, and evaluation. Marcel Decker, Inc., New York.Google Scholar
  117. Salvin, S. B. 1949. Cysteine and related compounds in the growth of the yeast-like phase of Histoplasma capsulatum. J. Infect. Dis. 84: 275–283.PubMedCrossRefGoogle Scholar
  118. Sasser, M. 1990a. Identification of bacteria through fatty acid analysis. In Z. Klement, K. Rudolph, and D. C. Sands (eds.), Methods in phytobacteriology. Akademia Kiado, Budapest.Google Scholar
  119. Sasser, M. 1990b. Identification of bacteria by gas chromatography of cellular fatty acids. Microbial Identification, Inc., Newark, NJ (MIDI), Technical Note #101.Google Scholar
  120. Sem, G. J., K. Tsurubayashi, and K. Homma. 1977. Performance of the piezoelectric microbalance respirable aerosol sensor. Amer. Ind. Hyg. Assoc. J. 38 (11): 580–588.Google Scholar
  121. Shaffer, B. T., and B. Lighthart. 1992. Baseline sources and fluxes of airborne microorganisms from plant surfaces. Proc. 11th Annual Meeting, Amer. Assoc. Aerosol Res., San Francisco, CA, Oct. 12–16, p. 183.Google Scholar
  122. Skillern, C. P. 1971. Problems using Mie scattering photometers for in-place HEPA filter tests and aerosol studies. Amer. Ind. Hyg. Assoc. J. 32: 96–103.Google Scholar
  123. Smid, T., E. Schokkin, J S M. Boleji, and D. Heederik. 1989. Enumeration of viable fungi in occupational environments: A comparison of samplers and media. Amer. Ind. Hyg. Assoc. J 50 (5): 235–239.Google Scholar
  124. Solomon, W. R., H. P. Burge, and J. R. Boise. 1980. Exclusion of particulate allergens by window air conditioners. J. Allergy Clin. Immunol. 65 (4): 305–308.PubMedCrossRefGoogle Scholar
  125. Strachan, D. P., B. Flannigan, E. M. McCabe, and F. McGarry. 1990. Quantification of airborne moulds in the homes of children with and without wheeze. Thorax 45 (5): 382–387.PubMedCrossRefGoogle Scholar
  126. Strugger, S. 1948. Fluorescence microscope examination of bacteria in soil. Can. J. Res. Series C. 26: 188–193.CrossRefGoogle Scholar
  127. Stull, R. B. 1988. An introduction to boundary layer meteorology. Kluwer Academic Publishers, Boston, p. 666.Google Scholar
  128. Swift, D. L., and M. Lippmann 1989. Electrostatic and thermal precipitators. In S. V. Hering, (ed.) Air sampling instruments for evaluation of atmospheric contaminants, 7th ed. American Conference of Governmental Industrial Hygienists, Cincinnati, OH. pp. 387–404.Google Scholar
  129. Thompson, S. V., M. N. Schroth, W. J. Moller, and W. O. Reil. 1976. Efficacy of bactericides and saprophytic bacteria in reducing colonization and infection of pear flowers by Erwinia amylovora. Phytopathology 66: 1457–1459.CrossRefGoogle Scholar
  130. Tortora, G. J., B. R. Funke, and C. L. Case. 1989. Microbiology—An introduction. 3d ed. The Benjamin/Cummings Publishing Company, Redwood City, CA, pp. 162,215– 216.Google Scholar
  131. Verhoeff, A. P., J. H. van Wijnen, J. S. M. Boleij, B. Brunekreef, E. S. van ReenenHoekstra, and R. A. Samson. 1990. Enumeration and identification of airborne viable mould propagules in houses. A field comparison of selected techniques. Allergy 45 (4): 275–284.PubMedCrossRefGoogle Scholar
  132. Walter, M. V., B. Marthi, V. P. Fieland, and L. M. Ganio. 1990. Effects of aerosolization on subsequent bacterial survival. Appl. Environ. Microbiol. 56 (11): 3468–3472.PubMedGoogle Scholar
  133. White, L. A., J. D. Hadley, J. E. Davids, and R. I. Naylor. 1975. Improved large-volume sampler for the collection of bacterial cells from aerosol. Appl. Microbiol. 29 (3): 335–339.PubMedGoogle Scholar
  134. Willeke, K., H. E. Ayer, and J. D. Blanchard. 1981. New methods for quantitative respirator fit testing with aerosols. Amer. Ind. Hyg. Assoc. J. 42 (2): 121–125.Google Scholar
  135. Willeke, K., and B. Y. H. Liu. 1976. Single particle optical counter: principle and application. In B. Y. H. Liu (ed.), Fine particles: Aerosol generation, measurement, sampling, and analysis. Academic Press, New York, pp. 697–729.Google Scholar
  136. Wolf, H., P. Skaliy, L. Hall, M. Harris, H. Decker, L. Buchanan, and L. Dahlgren. 1959. Sampling microbiological aerosols, Public Health Monograph No. 60, U.S. Department of Health, Education, and Welfare, Public Health Service.Google Scholar
  137. Wren, B., C. Claytin, and S. Tabaqchali. 1990. Rapid identification of toxigenic Clostridium difficile by polymerase chain reaction. Lancet 335 (8686): 423.PubMedCrossRefGoogle Scholar
  138. Young, H. M., J. W. Dominik, J. S. Walker, and E. W. Larson. 1977. Continuous aerosol therapy system using a modified collison nebulizer. J. Clin. Microbiol. 5 (2): 131–136.PubMedGoogle Scholar
  139. Zimmerman, R., and L. A. Meier-Reil. 1974. A new method for fluorescence Staining of bacterial populations on membrane filters. Kieler Meeresforchung 30:24–27.Google Scholar

Copyright information

© Chapman & Hall, Inc. 1994

Authors and Affiliations

  • Paul A. Jensen
  • B. Lighthart
  • A. J. Mohr
  • Brenda T. Shaffer

There are no affiliations available

Personalised recommendations