Resuscitation of Microbial Bioaerosols

  • Balkumar Marthi


The response of microorganisms to stressful conditions has long been an important and contentious issue among microbiologists. In any kind of laboratory experimentation, the endeavor has been to develop nutrient media and conditions that are “optimal” for the growth of microorganisms. Thus, most bacteriological media are very rich sources of all the possible nutrients that a microorganism may need to grow. However, these laboratory growth conditions are far removed from conditions in the “natural” environment. In the latter case, the microorganisms are subjected to consistent fluxes in very low (“suboptimal”) levels of nutrients. Attempts to grow these microorganisms in a laboratory environment where nutrients are plentiful often stresses microorganisms and impairs their ability to grow.


Bile Salt Cytoplasmic Membrane Maillard Reaction Selective Agent Injured Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allwood, M. C., and A. D. Russell. 1970. Mechanisms of thermal injury in nonsporulating bacteria. Adv. Appl. Microbiol. 12: 89–118.Google Scholar
  2. Alur, M. D., and N. Grecz. 1975. Mechanism of injury of Escherichia coli by freezing and thawing. Biochem. Biophys. Res., Commun. 62: 308–312Google Scholar
  3. Anderson, J. D. 1966. Biochemical studies of lethal processes in aerosols of Escherichia coli. J. Gen. Microbiol. 45: 303–313.Google Scholar
  4. Anderson, J. D., F. A. Dark, and S. Peto. 1968. The effect of aerosolization upon survival and potassium retention by various bacteria. J. Gen. Microbiol. 52: 99–105.Google Scholar
  5. Andrew, M. H. E., and A. D. Russell. 1984. The revival of injured microbes. Academic Press, New York.Google Scholar
  6. Archibald, F. S., and I. Fridovich. 1981. Maganese and defenses against oxygen toxicity in Lactobacillus plantarum. J. Bacteriol. 145: 442–451.PubMedGoogle Scholar
  7. Baird-Parker, A., and E. Davenport. 1965. The effect of recovery medium on the isolation of Staphylococcus aureus after heat treatment and after storage of frozen or dried cells. J. Appl. Bacteriol. 28: 390–396.Google Scholar
  8. Benbough, J. E. 1967. Death mechanisms in airborne Escherichi aoli. 1. J. Gen. Microbiol. 47: 325–333.Google Scholar
  9. Beuchat, L. R. 1978. Injury and repair of Gram-negative bacteria, with special consideration of the involvement of the cytoplasmic membrane. Adv. Appl. Microbiol. 23: 219243.Google Scholar
  10. Bozoglu, T. F., and G. C. Gurakan. 1989. Freeze-drying injury of Lactobacillus acidophilus. J. Food Protect. 52: 259–260.Google Scholar
  11. Bozoglu, T. F., M. Ozilgen, and U. Bakir. 1987. Survival kinetics of lactic acid starter cultures during and after freeze-drying. Enzyme Microb. Technol. 9: 531–537.Google Scholar
  12. Braswell, J. R., and A. W. Hoadley. 1974. Recovery of Escherichia coli from chlorinated secondary sewage. Appl. Microbiol. 28: 328–329.Google Scholar
  13. Brewer, D. G., S. E. Martin, and Z. J. Ordal. 1977. Beneficial effects of catalase or ppyruvate in a most-probable-number technique for the detection of Staphylococcus aureus. Appl. Environ. Microbiol. 34: 797–800.Google Scholar
  14. Busta, F. F. 1978. Introduction to injury and repair of microbial cells. Adv. Appl. Microbiol. 23: 195–201.Google Scholar
  15. Camper, A. K., and G. A. McFeters. 1979. Chlorine injury and the enumeration of waterborne coliform bacteria. Appl. Environ. Microbiol. 37: 633–641.Google Scholar
  16. Caley, S., B. A. Lewis, and M. T. Record, Jr. 1992. Origins of the osmoprotective properties of betaine and proline in Escherichia coli. J. Bacteriol. 174: 1586–1595.Google Scholar
  17. Cox, C. S. 1986. The survival of Escherichia coli atomized into air and into nitrogen from distilled water and from solutions of protecting agents as a function of relative humidity. J. Gen. Microbiol. 43: 383–399.Google Scholar
  18. Cox, C. S. 1966. The aerosol survival and cause of death of Escherichia coli K-12. J. Gen. Microbiol. 54: 169–175.Google Scholar
  19. Cox, C. S. 1969. The cause of loss of viability of airborne Escherichia coli K12. J. Gen. Microbiol. 57: 77–80.Google Scholar
  20. Cox, C. S. 1987. The aerobiological pathway of microorganisms. John Wiley & Sons, New York.Google Scholar
  21. Cox, C. S. 1989. Airborne bacteria and viruses. Sci. Prog. Oxford 73: 469–500.Google Scholar
  22. Cox, C. S., and F. Baldwin. 1967. The toxic effect of oxygen upon the aerosol survival of escherichia coli B. J. Gen. Microbiol. 49: 15–21.Google Scholar
  23. Delmore, R. P., and W. N. Thompson. 1981. A comparison of air sample efficiencies. Med. Device Diagn. Ind. 3: 45–48.Google Scholar
  24. Draughon, F. A., and P. J. Nelson. 1981. Comparison of modified direct plating procedures for recovery of injured Escherichia coli. 1. J. Food Sci. 46: 1188–1191.CrossRefGoogle Scholar
  25. duBuy, H. G., A. Hollaender, and M. D. Lacky. 1945. A comparative study of sampling devices for airborne microorganisms. Publ. Health Rept. Suppl. No. 184.Google Scholar
  26. Farr, S. B., D. Touati, and T. Kogoma. 1988. Effects of oxygen stress on membrane functions in Escherichia coli: role of HPI catalase, J. Bacteriol. 170: 1837–1842.PubMedGoogle Scholar
  27. Flowers, R. S., S. E. Martin, D. G. Brewer, and Z. J. Ordal. 1977. Catalase andenumeration of stressed Staphylococcus aureus. Appl. Environ. Microbiol. 33: 11121117.Google Scholar
  28. Goodlow, R. J., and F. A. Leonard. 1961. Viability and infectivity of microorganisms in experimental airborne infection. Bacteriol. Rev. 25: 182–187.Google Scholar
  29. Gomez, R. F., K. D. Blais, A. Herrero, and A. J. Sinskey. 1976. Effects of inhibitors of protein, RNA, and DNA synthesis on heat-injured Salmonella typhimurium LT2. J. Gen. Microbiol. 97: 19–27.Google Scholar
  30. Gomez, R. F., A. J. Sinskey, R. Davies, and T. P. Labuza. 1973 Minimal medium recovery of heated Salmonella typhimurium LT2. J. Gen. Microbiol. 74: 267–274.Google Scholar
  31. Hambleton, P. 1970. The sensitivity of Gram-negative bacteria, recovered from aerosols, to lysozyme and other hydrolytic enzymes. J. Gen. Microbiol. 61: 197–204.Google Scholar
  32. Hambleton, P. 1971. Repair of cell wall damage in Escherichia coli recovered from an aerosol. J. Gen. Microbiol. 69: 81–88.Google Scholar
  33. Herson, D. S., B. Marthi, M. A. Payer, and K. H. Baker. 1986. Enumeration of chlorine-stressed organisms with acridine orange 2-(p-iodophenyl)-3-(p nitrophenyl-5-phenyl tetrazolium chloride (AOINT). Curr. Microbiol. 13: 77–80.Google Scholar
  34. Hitchener, B. J., and A. F. Egan. 1977. Outer membrane damage in sublethally heated Escherichia coli. Can. J. Microbiol. 23: 311–318.Google Scholar
  35. Hurst, A. 1977. Bacterial injury: a review. Can. J. Microbiol. 23: 936–942.Google Scholar
  36. landolo, J. J., and Z. J. Ordal. 1966. Repair of thermal injury of Staphylococcus aureus. J. Bacteriol. 91: 131–142.Google Scholar
  37. Imlay, J. A., and S. Linn. 1987. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J. Bacteriol. 169: 2967–2976.PubMedGoogle Scholar
  38. Kang, Y. F., and J. H. Frank. 1989. Biological aerosols: A review of airborne contamina- tion and its measurement in dairy processing plants. J. Food Protect. 52: 512–524.Google Scholar
  39. Knabel, S. J., H. W. Walker, P. A. Hartman, and A. F. Mendonca. 1990. Effects of growth temperatures and strict anaerobic recovery on the survival of Listeria manacytogenes during pasturization. Appl. Environ. Microbiol. 56: 370–376.Google Scholar
  40. Lembke, L. L., R. N. Niseley, R. C. V. Nostrand, and M. D. Hale. 1981. Precision of the All-Glass Impinger and Anderson microbial impactor for air sampling in solid waste handling facilities. Appl. Environ. Microbiol. 42: 222–225.Google Scholar
  41. Lighthart, B., and A. S. Frisch. 1976. Estimation of viable airborne microbes downwind from a point source. Appl. Environ. Microbiol. 31: 700–704.Google Scholar
  42. Lighthart, B., and J. Kim. 1989. Simulation of airborne microbial droplet transport. Appl. Environ. Microbiol. 55: 2349–2355.Google Scholar
  43. Lin, S. 1973. Evaluation of coliform tests for chlorinated secondary effluents. J. Water Pollut. Control Fed. 45: 498–506.Google Scholar
  44. Linton. R. H., J. B. Webster, M. D. Pierson, J. R. Bishop, and C. R. Hackney. 1992. The effect of sublethal heat shock and growth atmosphere on heat resistance of Listeria monacytogenes Scott A. J. Food Protect. 55: 84–87.Google Scholar
  45. Lundholm, I. M. 1982. Comparison of methods for quantitative determination of airborne bacteria and evaluation of total viable counts. Appl. Environ. Microbiol. 44: 179–183.Google Scholar
  46. Marthi, B., and B. Lighthart. 1990. Effects of betaine on the enumeration of airborne bacteria. Appl. Environ. Microbiol. 56: 1286–1289.Google Scholar
  47. Marthi, B., B. T. Shaffer, B. Lighthart, and L. Ganio. 1991 Resuscitation effects of catalase on airborne bacteria. Appl. Environ. Microbiol. 57: 1775–1776.Google Scholar
  48. Martin, S. E., R. S. Flowers, and Z. J. Ordal. 1976. Catalase: its effect on microbial enumeration. Appl. Environ. Microbiol. 32: 731–734.Google Scholar
  49. McFeters, G. A., S. C. Cameron, and M. W. LeChevallier. 1982. Influence of diluents, media, and membrane filters on detection of injured waterborne coliform bacteria. Appl. Environ. Microbiol. 43: 97–103.Google Scholar
  50. Morichi, T. 1966. In T. Nei, ed., Freeze drying of microorganisms. University of Tokyo Press, Tokyo, pp. 53–58.Google Scholar
  51. Moss, C. W., and M. L. Speck. 1966. Release of biologically active peptides from Escherichia coli at subzero temperatures. J. Bacteriol. 91: 1105–1111.PubMedGoogle Scholar
  52. Pierson, M. D., R. F. Gomez, and S. E. Martin. 1978. The involvement of nucleic acids in bacterial injury. Adv. Appl. Microbiol. 23: 263–285.Google Scholar
  53. Ray, B. 1979. Methods to detect stressed microorganisms. J. Food Protect. 42: 346–355.Google Scholar
  54. Ray, B., J. J. Jezeski, and F. F. Busta. 1971. Repair of injury in freeze-dried Salmonella anatum. Appl. Microbiol. 22: 401–407.Google Scholar
  55. Read, R. B., Jr. 1979. Detection of stressed microorganisms-Implications for regulatory monitoring. J. Food Protect. 42: 368–369.Google Scholar
  56. Reasoner, D. J., and E. E. Geldreich. 1985. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 46: 1–7.Google Scholar
  57. Seidler, R. J., and S. Hern. 1988. Special report: release of ice-minus recombinant bacteria. Environmental Research Laboratory, U.S. Environmental Protection Agency, Corvallis, OR, p. 83.Google Scholar
  58. Sinskey, T. J., and G. J. Silverman. 1970. Characterization of injury incurred by Escherichia coli upon freeze-drying. J. Bacteriol. 101: 429–437.PubMedGoogle Scholar
  59. Smith, J. L., and D. L. Archer. 1988. Heat-induced injury in Listeria monocytogenes. J. Ind. Microbiol. 3: 105–110.Google Scholar
  60. Sorber, C. A., H. T. Bausum, S. A. Schaub, and M. J. Small 1976. A study of bacterial aerosols at a wastewater irrigation site. J. Water Pollut. Control Fed. 48: 2367–2379.Google Scholar
  61. Standard methods for the examination of water and wastewater. 1985. American Public Health Association Inc., New York.Google Scholar
  62. Stersky, A. K., and T. I. Hedrick. 1972. Inhibition of growth of airborne coliforms and other bacteria on selective media. J. Milk Food Technol. 35: 156–162.Google Scholar
  63. Stersky, A. K, D. R. Heldman, and T. I. Hedrick. 1972. Viability of airborne Salmonella newbrunswich under various conditions. J. Dairy Sci. 55: 14–18.PubMedCrossRefGoogle Scholar
  64. Sutherland, L., J. Cairney, M. J. Elmore, II. Boothe, and C. F. Higgins. 1986. Osmotic regulation of transcription: induction of the proU betaine transport gene is dependent in accumulation of intracellular potassium. J. Bacteriol. 168: 805–814.PubMedGoogle Scholar
  65. Teltsch, B., H. I. Shuval, and J. Tador. 1980. Die-away kinetics of aerosolized bacteria from sprinkler application of wastewater. Appl. Environ. Microbiol. 39: 1191–1197.Google Scholar
  66. Tyler, M. E., and E. L. Stupe. 1959. Bacterial aerosol samplers. I: Development and evaluation of the All-Glass Impinger. Appl. Microbiol. 7: 377–349.Google Scholar
  67. Wagman, J. 1960. Evidence of cytoplasmic membrane injury in the drying of bacteria. J. Bacteriol. 80: 558–564.PubMedGoogle Scholar
  68. Webb, S. J. 1959. Factors affecting the viability of airborne bacteria. I. Bacteria aerolozied from distilled water. Can. J. Microbiol. 5: 649–669.Google Scholar
  69. Webb, S. J. 1960. Factors affecting the viability of airborne bacteria. II. The effect of chemical additives on the behavior of airborne cells. Can. J. Microbiol. 6: 71–105.Google Scholar
  70. Webb, S. J. 1967. The influence of oxygen and inositol on the survival of semi-dried microorganisms. Can. J. Microbiol. 13: 737–745.Google Scholar
  71. Witter, L. D., and Z. J. Ordal. 1977. Stress effects and food microbiology. In M. Woodbine (ed.) Antibiotics and antibiosis in agriculture. Butterworths, Reading, MA, pp. 102–112.Google Scholar
  72. Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus, and G. N. Somero. 1982. Living with water stress: evolution of osmolyte systems. Science 217: 1214–1222.PubMedCrossRefGoogle Scholar
  73. Zentner, R. J. 1966. Physical and chemical stresses of aerosolization. Bacteriol. Rev. 30: 551–557.Google Scholar
  74. Zimmerman, L. 1962. Survival of Serratia mercescens after freeze-drying or aerosolization at unfavorable humidity. I. Effects of sugars. J. Bacteriol. 84: 1297–1302.Google Scholar

Copyright information

© Chapman & Hall, Inc. 1994

Authors and Affiliations

  • Balkumar Marthi

There are no affiliations available

Personalised recommendations