Death Mechanisms in Microbial Bioaerosols with Special Reference to the Freeze-Dried Analog

  • Eitan Israeli
  • Janina Gitelman
  • Bruce Lighthart


Bioaerosols may be generated from a liquid suspension of microorganisms, or upon drying from a dust or powder. Man makes use of both suspensions and powders of microorganisms in his biotechnological applications in manufacturing, agriculture, and forestry. Although, airborne, the deleterious effects of the stressful atmospheric conditions may damage the organisms, there is a point where resuscitation repair is necessary,1 or a point beyond repair (i.e., death).


Oxygen Exposure Fourth International Symposium Phage Production Thymine Starvation Synthetic Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. D., and C. S. Cox. 1967. Microbial survival. Pp. 203–226. In Airborne microbes, Cambridge University Press, Cambridge.Google Scholar
  2. Anderson, J. D., F. A. Dark, and S. Peta. 1968. The effect of aerosolization upon survival and potassium retention by various bacteria. J. Gen. Microbiol. 52: 99–105.Google Scholar
  3. Anderson, J. D., and F. A. Dark. 1967. Studies on the effects of aerosolization on the rates of efflux of ions from populations of Escherichia coli strain B. J. Gen. Microbiol. 46: 95–105.CrossRefGoogle Scholar
  4. Bayer, M. E. 1968. Adsorption of bacteriophages to adhesions between wall and membrane of Escherichia coli. J. Virol. 2: 346–356.PubMedGoogle Scholar
  5. Benbough, J. E., and P. Hambleton. 1973. Structural organizational and functional changes associated with envelopes of bacteria sampled from aerosols. Pp. 134–137. In J. F. Ph. Hels and K. C. Winkler (eds.), Fourth International Symposium on Aerobiology. Oosthoek, Utrecht, The Netherlands.Google Scholar
  6. Benbough, J. E., P. Thimbleton, K. L. Martin, and R. E. Strange. 1972. Effect of aerosolization on transport of alfa-methyl glucoside and galactosides in E. coli. J. Gen. Microbiol. 72: 511–520.PubMedGoogle Scholar
  7. Bremer, H., and G. Churchward. 1985. Initiation of chromosome replication in Escherichia coli after induction of dnaA gene expression from a lac promoter. J. Bacteriol. 164: 922–924.PubMedGoogle Scholar
  8. Bremer, H., and G. Churchward, 1991. Control of cyclic chromosome replication in Escherichia coli. Microbiol. Rev. 55: 459–475.PubMedGoogle Scholar
  9. Changeux, J. P., and J. Thiery, 1968. On the mode of action of colicins: A model of regulation at membrane level. J. Theoret. Biol. 17: 315–318.CrossRefGoogle Scholar
  10. Cox, C. S. 1970. Aerosol survival of E. Coli B disseminated from the dry state. Appl. Microbiol. 19: 604–606.PubMedGoogle Scholar
  11. Cox, C. S. 1987. The aerobiological pathway of microorganisms. John Wiley & Sons. Chichester.Google Scholar
  12. Cox, C. S., and F. Baldwin. 1967. The toxic effect of oxygen upon the aerosol survival of Escherichia coli B. J. Gen. Microbiol. 49: 115–116.Google Scholar
  13. Cox, C. S., J. Baxter, and B. J. Maidment. 1973. A mathematical expression of oxygen-induced death in dehydrated bacteria. J. Gen. Microbiol. 75: 179–185.PubMedGoogle Scholar
  14. Cox, C. S., and R. Heckly. 1972. Effects of oxygen upon freeze-dried and freeze-thawed bacteria: viability and free radical studies. Can. J. Microbiol. 19: 189–194.CrossRefGoogle Scholar
  15. Cox, C. S., M. C. Bondurant, and M. T. Hatch. 1971. Effects of oxygen on aerosol survival of radiation sensitive and resistant strains of E. coli B. J. Hyg. ( Camb. ) 69: 661–672.CrossRefGoogle Scholar
  16. Crowe, J. H., J. F. Carpenter, L. M. Crow, and T. J. Anchordoguy. 1990. Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology 27: 219–231.CrossRefGoogle Scholar
  17. Crowe, J. H., F. A. Hoekstra, and L.M. Crowe. 1989. Membrane phase transitions are responsible for imbibitional damage in dry pollen. Proc. Nat. Acad. Sci. USA 86: 520–523.PubMedCrossRefGoogle Scholar
  18. Ellar, O. J., O. G. Lundgren, and R.A. Slepecky. 1966. Fine structural bacillus megaterium during synchronous growth. 76: 1189–1205.Google Scholar
  19. Fry, R. M., and R. I. N. Greaves. 1951. The survival of bacteria during and after drying. J. Hyg. Camb. 220–243.Google Scholar
  20. Guttman, M. 1966. Ph.D. Thesis. Hebrew University, Jerusalem.Google Scholar
  21. Hambleton, P. 1971. Repair of wall damage in Escherichia coli recovered from aerosol. J. Gen. Microbiol. 69: 81–88.PubMedGoogle Scholar
  22. Hambleton, P. and J. E. Benbough. 1973. Damage to the envelopes of Gram-negative bacteria recovered from aerosols. Pp. 131–134. In J. F. Ph. Hels and K. C. Winkler (eds.), Fourth International Symposium on Aerobiology. Oosthoek, Utrecht, The Netherlands.Google Scholar
  23. Hanna, M. H., and P. L. Carl. 1975. Reinitation of deoxyribonucleic acid synthesis by deoxyribonucleic acid initiation mutants of Escherichia coli: role of ribonucleic acid synthesis, protein synthesis and cell division. J. Bacteriol. 121: 219–226.PubMedGoogle Scholar
  24. Heckly, R. J., A. L. Dimmick, and J. J. Windle, 1963. Free radical formation and survival of lyophilized microorganisms. J. Bacteriol. 85: 961–966.PubMedGoogle Scholar
  25. Hutton, R. S., R. J. Hilmoe, and J. L. Roberts. 1951. Some physical factors that influence the survival of Brucella abortus during freeze-drying. J. Bacteriol. 61: 309–319.PubMedGoogle Scholar
  26. Israeli, E., E. Giberman, and A. Kohn, 1974. Membrane malfunction in freeze-dried Escherichia coli. Cryobiology 11: 473–476.PubMedCrossRefGoogle Scholar
  27. Israeli, E., and A. Kohn. 1972. Protection of lyophilized E. coli from oxygen by colicin E treatment. FEBS Lett. 26: 323–326.CrossRefGoogle Scholar
  28. Israeli, E., A. Kohn, and J. Gitleman 1975. The molecular nature of damage by oxygen to freeze-dried Escherichia coli. Cryobiology 12: 15–25.PubMedCrossRefGoogle Scholar
  29. Israeli, E., and A. Shapira, 1973. Production of bacteriophage by lyophilized and oxygen exposed E. coli. J. Gen. Microbiol. 79: 159–161.Google Scholar
  30. Israeli, E. 1975. Ph.D. Thesis, Tel Aviv University.Google Scholar
  31. Israeli, E. 1973. Effects of aerosolization and lyophilization on macromolecular synthesis in E. coli. Pp. 110–113. In J. F. Ph.Hels and K. C. Winkler (eds.), Fourth International Symposium on Aerobiology. Oosthoek, Utrecht, The Netherlands.Google Scholar
  32. Israeli, E., B. T. Shaffer, J. P. Hoyt, B. Lighthart, and L. M. Ganio. 1992. Survival of freeze-dried genetically engineered microorganisms in air and the effect of visible light. ASM 92nd General Meeting, New Orleans, LA.Google Scholar
  33. Jacob, F., L. L. Simionovich, E. Wolman. 1952. Sur La Biosynothose D’une Colicin Et Sur Son Mode D’Action, Ann. Inst. Pasteur. 83: 295–315.Google Scholar
  34. Jacob, F., S. Brenner, & F. Cuzin. 1963. On The Regulation of DNA Replication in Bacteria. Cold Spring Harbor Symp. Quant. Biol. 28: 329–348.CrossRefGoogle Scholar
  35. Kohn, A. 1960. Lysis of frozen and thawed cells of E. coli by lysosome, and their conversion into spheroplasts. J. Bacteriol. 79: 697–706.PubMedGoogle Scholar
  36. Lark, K. G., T. Redko, & E. J. Hoffman. 1963. The effect of amino acid deprivation on subsequent DNA replication. Biochem. Biophys. Beta. 76: 9–24.Google Scholar
  37. Lindberg, A. A. 1973. Bacteria Phage Recptors. Ann. Rev. Microbiol. 27: 205–241.CrossRefGoogle Scholar
  38. Lion, M. B. 1963. Quantitative aspects of the protection of freeze-dried E. coli against the toxic effect of oxygen. J. Gen. Microbiol. 32: 961–324.Google Scholar
  39. Lion, M. B., and P. D. Bergman. 1961. Substances which protect lyophilized Escherichia coli against the lethal effect of oxygen. J. Gen. Microbiol. 25: 291–296.PubMedGoogle Scholar
  40. Lion, M. B., J. S. Kirby Smith, and M.L. Randolph. 1961. Electron spin resonance signals from lyophilized bacterial cells exposed to oxygen. Nature (Lond.) 192: 34–36.CrossRefGoogle Scholar
  41. Lyons, J. M. 1972. Phase transitions and control of cellular metabolism at low temperatures. Cryobiology 9:361–350.Google Scholar
  42. Mackey, E. Y. 1984. In M.H.E. Andrew and A. D. Russell (eds.) The revival of injured microbes, Academic Press, London, pp. 45–75.Google Scholar
  43. Maister, H. G., V. F. Pfeiffer, W. M. Bogart, and E. N. Heger. 1958. Survival during storage of Serratia marcescens dried by continuous vacuum sublimation. Appl. Microbiol. 6: 413–419.PubMedGoogle Scholar
  44. Martin, H. H. 1963. Bacterial Protoplasts-A Review. J. Theoret. Biol. 5: 1–34.CrossRefGoogle Scholar
  45. Messer, W. 1972. Initiation of DNA replication in Escherichia coli B/r: Chronology of events and transcriptional control of initiation. J. Bacteriol. 112: 7–12.PubMedGoogle Scholar
  46. Nei, T., T. Araki, and T. Matsusaka. 1968. Freezing injury to aerated and non-aerated cultures of Escherichia coli. Pp. 3–15. In T. Nei (ed.), Freezing and drying of microorganisms. University of Tokyo Press, Tokyo.Google Scholar
  47. Novick, O., E. Israeli, and A. Kohn. 1972. Nucleic acid and protein synthesis in reconstitu- ted lyophilized Escherichia coli exposed to air. J. Appl. Bacteriol. 35: 185–191.PubMedCrossRefGoogle Scholar
  48. Oseroff, A. R. P. W. Robbins, and M. M. Burger. 1973. The cell surface membrane: biochemical aspects and biophysical probes. Ann. Rev. Biochem. 42: 647–682.PubMedCrossRefGoogle Scholar
  49. Pritchard, R. H., and A. Zaritsky. 1970. Effect of thymine concentration on the replication velocity of DNA in a thymineless mutant of Escherichia coli. Nature (Lond.) 226: 126131Google Scholar
  50. Reeve, J. N., D. J. Groves, and D. J. Clark. 1970. Regulation of Cell Division Mutants. J. Bacteriol. 104: 1051–1064.Google Scholar
  51. Rogers, H. J. 1970. Bacterial growth and the cell envelope. Bacteriol. Rev. 34: 196–214.Google Scholar
  52. Shapira, A. 1974. Ph.D. Thesis. Tel Aviv University, Tel Aviv.Google Scholar
  53. Singer, S. J., and G. L. Nicolson. 1972. The fluid mosaic model of the structure of cell membranes, Science 175: 720–731.PubMedCrossRefGoogle Scholar
  54. Skarstad, K., E. Boye, and H.B. Steen. 1986. Timing of initiation of chromosome replication individual Escherichia coli cells EMBO J. 5: 1711–1716.Google Scholar
  55. Smith, D. W. 1973. DNA synthesis in prokaryotes: replication. Pp. 321–393. In Progress in biophysics and molecular biology. Vol. 26. Pergamon Press, New York.Google Scholar
  56. Speck, M. L., and R. A. Cowman. 1968. Metabolic injury to bacteria resulting from freezing. Pp. 39–51. In T. Nei (ed.), Freezing and drying of microorganisms. University of Tokyo Press, Tokyo.Google Scholar
  57. Stark, C. N., and B. L. Herrington. 1931. The drying of bacteria and the viability of dry bacterial cells. J. Bacteriol. 21: 13–14.Google Scholar
  58. Straat, P. A., H. Wolochow, R. L. Dimmick, and M. A. Chatigny. 1977. Evidence of incorporation of thymidine into deoxyribonucleic acid in airborne bacterial cells. Appl. Environ. Microbiol. 34: 292–296.PubMedGoogle Scholar
  59. Tappel, A. L. 1966 In: “Cryobiology.” Ed. Meryman, H. T. Effects of Low Temperatures & Freezing on Enzymes & Enzyme Systems. Academic Press. London & New York.Google Scholar
  60. Webb, S. J. 1963. The effect of relative humidity and light on air-dried organisms. J. Appl. Bacteriol. 26: 307–313.CrossRefGoogle Scholar
  61. Webb, M. 1953. Effects of magnesium on cellular division in bacteria. Science 118: 607–611.PubMedCrossRefGoogle Scholar
  62. Zaritsky, A. 1975. Rate stimulation of deoxyribonuclecic acid synthesis after inhibition. J. Bacteriol. 122: 841–846.PubMedGoogle Scholar

Copyright information

© Chapman & Hall, Inc. 1994

Authors and Affiliations

  • Eitan Israeli
  • Janina Gitelman
  • Bruce Lighthart

There are no affiliations available

Personalised recommendations